
SEMANTICS EXTRACTION IN
INFORMATION SPACES USING
CO-OCCURRENCE ANALYSIS

A dissertation submitted in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

by

MANDAR R. MUTALIKDESAI

International Institute of Information Technology – Bangalore

2013



Dedicated to

Amma, Pappa

and

Kshithi







Acknowledgements

I would like to begin by expressing my gratitude towards Prof. Srinath

Srinivasa, my thesis supervisor. I have had the pleasure of working with Prof.

Srinath for the last 10 years (spanning my Masters and PhD programs),

during which I have learned a lot from him. He has always afforded me

the freedom to try different things (and to try things differently!), even if it

meant that I would not always succeed. I especially thank him for providing

me this freedom. That is how I have been able to learn. And of course, I

am grateful to him for his timely advice and contributions during all stages

of this work. I will cherish the many discussions I have had with him on

technical and philosophical matters. I hope to collaborate with him in the

future as well.

I received some very insightful and constructive comments from the four

anonymous reviewers of this thesis. Their comments and ideas greatly helped

in the shaping of this thesis. For this, I am very grateful to them.

All the years that I have been at IIIT-B, I have been a part of the Open

Systems Lab. Over the years, I have had the pleasure of working with many

lab-mates. I would like to thank Sanket Patil, Aditya Rachakonda, Karthik

B. R., Siddhartha Reddy, Sumant Kulkarni, Sudha Mani, Rashmi Rao, Vijay

Olety, Nikhil Patil and Saikat Mukherjee for the various vibrant discussions

we had in the lab.

I would like to express the deepest gratitude to Prof. S. Sadagopan for

providing a vibrant atmosphere for learning and research at IIIT-B. I would

also like to thank the faculty members of IIIT-B, many of whom have pro-

vided insightful suggestions on my thesis topic. I am especially grateful to

Prof. Rajagopalan, Prof. Chandrashekar and Prof. Prasanna, whose in-

sightful comments vastly improved the ideas in this thesis. Thanks are also

due to Mr. Ramachandra A. N., Mr. C. M. Abraham, Mr. Murugan, Ms.

Chandrika, Ms. Rama, Ms. Padma, Ms. Nirmala and Mr. Somashekhar for

smoothly handling all administrative issues during my stay at IIIT-B.

Special thanks to Prof. Shalini Urs for her constant support and encour-

agement. I have enjoyed working with her at ISiM (UoM, Mysore) over the



last 4 years, and hope that we will continue to work together in the future

as well. I would also like to convey my gratitude to Prof. S. K. Gupta of

IIT-Delhi for his analytical comments on this thesis.

For the first three years of my PhD program, I was an Infosys Scholar. I

would like to convey my gratitude to Infosys Ltd. for their encouragement

and support.

I have had the pleasure of collaborating with Prof. Ambuj K. Singh and

Prof. B. S. Manjunath during my stay at the University of California, Santa

Barbara. I would like to thank them for the many discussions I have had

with them during the formative stages of my PhD work.

My friends and extended family have always been very supportive of what

I have wanted to do in my life and career. My thanks to Vijay, Udaka, Raghu,

Deepak, Archana, Pawan, Alpana, Payal, Prashant, Daya, Kshama, Pradeep,

Sanket, Surabhi, Dattu, Gopi, Chitra, Sudarsan, Kavan, Aniruddha, Prasad

Joshi, Prasad Kalghatgi, Shyam, Ram, Manoj Deshpande, Manoj Markod,

Satish, Narasimha, Shailesh, Arvind, Sunita, Raghavendra Edke, Harshad

and Shrinidhi.

I would like to convey special gratitude to my little nephew, Naman, for

being such a lovely part of my life.

Words cannot express what I feel towards my parents, Asha – my sister,

my mother-in-law and Kshithi – my closest friend. I possibly couldn’t express

enough gratitude to them for their endless love, care and inspiration.



Abstract

An information space is a large collection of content generated by human

actors. Examples of information spaces include the Web, digital libraries

and social media. These spaces hold significant amounts of latent semantics,

which may be relevant to various stakeholders such as market data analysts,

marketing research personnel, etc. In this thesis, we address the problem of

mining latent semantics from information spaces. We note that information

spaces are not uniformly similar in nature. They can be classified into two

types: repository spaces and social spaces. Examples of repository spaces are

the Web and digital libraries, while examples of social spaces are the blo-

gosphere and wikis. Content is generated in both these spaces by cognitive

processes of actors, with the content manifesting as documents, web pages,

blog posts, reviews, articles, tweets, etc. During the creation of such content,

the actor typically embeds her individual world-views (opinions, feelings, etc.)

into the content. Also, in both these spaces, there exist social interactions

between the cognitive processes, which manifest as references between doc-

uments in the form of links or citations, comments to blog posts, rebuttals

to criticisms, responses to reviews, etc. However, repository spaces and so-

cial spaces differ in terms of the boundary of social interaction, the scope of

engagement of actors, and the localized synchrony of social interactions.

While the social interactions in repository spaces can be spread across

the entire repository space, the social interactions in social spaces have well-

defined boundaries within which the commonly held world-views of multiple

actors can emerge in a focused manner. We call this boundary within which

cognitive processes interact as a socio-cognitive process. While the entire

repository represents a single socio-cognitive process, there exist multiple

socio-cognitive processes within a social space. Also, in a repository space,

the engagement of actors is typically limited to editing only a few documents,

since they can edit only those documents that are owned by them. In so-

cial spaces, on the other hand, actors can engage in multiple socio-cognitive

processes, typically even if those socio-cognitive processes are not owned by

them. Another aspect in which repository spaces and social spaces differ is



the localized synchrony of social interactions. As we have observed, the social

interactions in a repository space are not localized. Also, these interactions

between cognitive processes do not exhibit synchrony. By this, we mean that

these social interactions are not in tune with each other over time within

the socio-cognitive process. On the other hand, the social interactions in a

social space are not only localized to a well-defined socio-cognitive process,

but also synchronous. Such social interactions largely take place within short

durations of each other in a localized manner.

In the first part of this thesis, we posit that semantics are the commonly

held world-views of actors, which emerge in a socio-cognitive process in both,

repository spaces as well as social spaces. We rely on the co-occurrence an-

alysis of artifacts such as concepts (e.g., named entities) and social interac-

tions (e.g., citations) within an information space in order to mine seman-

tics. We assert that co-occurrence analysis embodies a fundamental principle

of human cognition known as the Hebbian Theory. We also assert that co-

occurrence analysis is a manifestation of the principles of Ordinary Language

Philosophy, which states that the meaning of a term depends upon its usage

with other terms. Further, we argue that co-occurrence analysis not only

helps in identifying the meaning of a concept, but also its semantic associa-

tions relative to other concepts. We test this hypothesis in both, repositories

and social spaces.

In the second part of this thesis, we analyze the co-occurrences of cita-

tions (or co-citations) to discover endorsed citations in a repository space.

Given a document, an endorsed citation is an outgoing citation whose target

document is deemed by other co-citing documents to be more relevant to the

source document than the targets of other outgoing citations from the source

document. We envisage the use of endorsed citations in focused resource

discovery and relevance ranking in repository spaces. In the third part of

this thesis, we analyze the co-occurrences of concepts (terms) in a social sp-

ace to detect object-attribute relationships. Given an object (i.e. a concept),

we define as its attributes those concepts that, besides being semantically

related to the object, help in collectively describing the object uniquely. We

assert that the attributes of an object tend to co-occur with the object across



cognitive contexts (paragraphs, article-sections, documents, etc.) in a social

space. We present two co-occurrence based hypotheses for identifying object-

attribute relationships between concepts. We envisage that the discovery of

the semantic attributes of an object has applications in social media analy-

tics, e.g., (i) marketing research personnel looking to find out how the pop-

ulation characterizes their product, and (ii) classification of concepts within

an encyclopedic environment like Wikipedia.
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1
Introduction

An information space is essentially a large collection of content generated

by various human actors (users). Enormous amounts of data are generated

daily in online information spaces like digital libraries, intranets, the Web,

forums, blogs and wikis. Information spaces hold significant amounts of

latent knowledge that may give insights to various stakeholders. For instance,

an analyst in a technology product company (e.g., Apple Inc.) would be

interested in knowing what the population at large opines about its latest

1
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product, on technology forums such as Slashdot.1 Such an analyst would

be interested in questions such as: (i) what qualifiers are people assigning

(expensive, classy, etc.) to our product, (ii) which celebrities are talking

about our product, etc. Hence, analytics of information spaces has been

attracting increasing research attention.

There exist several approaches for semantics extraction in information

spaces, such as dimensionality reduction (e.g., [Deerwester et al., 1990; Song

and Park, 2007; Steyvers and Griffiths, 2007]), machine learning (e.g., [Harish

et al., 2010; Pang et al., 2002; Sebastiani, 2002; Turney, 2001]), generative

models (e.g., [Anthes, 2010; Blei et al., 2003; Hofmann, 1999a]), and net-

work models (e.g., [Ceglowski et al., 2003; Iria et al., 2007; Jin et al., 2009;

Minkov et al., 2006; Rachakonda and Srinivasa, 2006]). Usually, these ap-

proaches view an information space as a corpus of text or hypertext, and

look for patterns within the text and linkage structure. However, they do

not seem to present a theoretical understanding of how semantics come to

be embedded in the information space, in the first place. In comparison,

we look to address this by understanding what causes content to be created

by actors in information spaces, and what do semantics embedded in such

content represent.

In this thesis, we classify information spaces into two types: (i) Repos-

itory Spaces, and (ii) Social Spaces. Examples of repository spaces include

the Web, digital libraries, and text corpora, while examples of social spaces

include blogging environments, microblogs and other social networks, and

online document tagging systems.

1http://slashdot.org/

http://slashdot.org/
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1.1 Information Spaces as Cognitive Spaces

Content in created in both, repository spaces as well as social spaces, through

the execution of “cognitive processes” by actors. Given an actor creating con-

tent on a certain topic in information spaces, we define her cognitive process

as the process by which she embeds her “world-view” of the topic into the

content. In other words, the actor’s cognitive process (CP) causes the content

to capture what she “thinks”, “feels”, “knows” or “learns” about the topic

in question. Examples of CPs include essays, monologues, argumentations,

comments, rants, reviews, etc.

Suppose an actor writes a review of the Apple iPhone 4S (on a web page

or in a blog post, for instance). The content of this review reflects how

the actor cognitively characterizes the topic of “Apple iPhone 4S”. Suppose

she characterizes the iPhone as: (i) being a smart-phone, (ii) replaceable by

the Samsung Android phone, (iii) containing the iOS operating system, etc.

These characterizations reflect the world-view that the actor holds about the

iPhone. For example, she thinks that:

• iPhone “is a” smart-phone

• iPhone “is a semantic sibling of” the Samsung Android phone (c.f. [Br-

unzel, 2008; Brunzel and Spiliopoulou, 2007; Rachakonda et al., 2012]).

• iPhone “contains” the iOS operating system

In the above example, the actor has embedded her individual world-

view into her review in terms of various semantic associations of the concept

iPhone with other concepts such as smart-phone, iOS, etc.
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There also exist social interactions between chunks of content in both, re-

pository spaces and social spaces. This essentially translates to the existence

of social interactions between the corresponding CPs in these spaces. In this

sense, information spaces are, in general, “socio-cognitive spaces”.

In the example above, we have discussed how the individual world-view

of an actor gets embedded inside her review of the Apple iPhone 4S. Now,

other actors could write their own reviews about the iPhone. Also, it is

possible for the reviews generated by these various actors to socially interact

with one another. These interactions could be in the form of hyperlinks to

each other’s reviews (in the case of a web page) or comments to each other’s

reviews (in the case of a blog post), or even further comments to each other’s

comments (in the case of a blog post). Since postings, comments and web

page content are manifestations of CPs, the interactions between them can

be seen as interactions between the corresponding CPs.

In this fashion, when various CPs in an information space interact with

each other, the individual world-views of different actors get aggregated in

an emergent manner to form collectively held world-views of the multiple

actors. We define such a process, in which individual CPs interact with

each other to emergently give rise to commonly held world-views, as a socio-

cognitive process (SCP). Essentially, the commonly held world-views of a

population define the commonsense meaning ascribed to a given concept,

which is expressed in terms of its associations with other concepts in an

information space.

In other words, the commonly held world-views represent the semantics

embedded within the information space. In this sense, semantics emerge
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from the aggregation of individual or “local” world-views of the actors in a

population.

1.2 Repository Spaces vs Social Spaces

Repository spaces and social spaces differ in three aspects: (i) boundaries

within which social interactions take place between cognitive processes, (ii)

engagement of actors across the space, and (iii) the localized synchrony of

social interactions. This is explained below.

1.2.1 Boundary of Social Interaction

A key difference between repository spaces and social spaces is the boundary

of social interaction between chunks of content (and hence their correspond-

ing CPs). Even though social interactions between CPs play a crucial role in

both these spaces, the boundary of social interactions in repository spaces is

practically the entire repository, while the boundary of social interaction in

social spaces is a single SCP and not the entire social space.

Example for Repository Spaces On the Web, in order for an actor Y

to debate or argue about the ideas expressed by another actor X in a web

page A, either (i) a new web page B must be created by Y containing a link

to A together with Y ’s own ideas, or (ii) an existing web page C owned by

Y must be edited to include a link to A together with Y ’s own ideas. Thus,

it is possible for any document to link to any other document in a repository

environment. The individual CPs of X and Y do not seem to be contained
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within a well-defined boundary that allows multiple world-views to emerge

coherently in a focused manner.

Example for Social Spaces In a social space such as Wikipedia, in order

for an actor Y to debate about the ideas expressed by another actor X in a

web page A, the actor Y need not use a separate document. Here, Y need

only edit the document A to reflect his argumentations. Similarly, several

other users may edit A to reflect their own ideas about the topic of A. Here,

contrary to repository spaces, the individual CPs of the various actors are

contained within a well-defined boundary (which is the SCP), which allows

multiple world-views to emerge coherently within the boundaries of the SCP.

1.2.2 Scope of Actor Engagement

Another difference between repository spaces and social spaces is the scope

of actor engagement, even though content is created in both these spaces

by autonomous actors executing CPs. While actor engagement is highly fo-

cused towards a small set of documents (i.e. CPs) in repository spaces, actor

engagement in social spaces can be spread across a large number of SCPs.

In a repository space, an actor can typically edit only documents created by

herself. In contrast, an actor in a social space can typically contribute to any

existing SCP.

Example for Repository Spaces If actors X and Y own web pages A

and B respectively, then X is allowed to edit only A, and not B. Conversely,

a document on the Web can be edited by only a pre-determined number of
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actors. In other words, web page A can be edited only by X (who is known

to be the owner A), and not by Y . This type of isolated engagement results

in social interactions that are limited only by the boundaries of the entire

repository space.

Example for Social Spaces A user is allowed to edit any article in

Wikipedia, and is not pre-determinedly restricted to accessing only a subset

of Wikipedia articles. Conversely, an SCP can involve any number of ac-

tors. An example of this is multiple actors simultaneously editing a single

Wikipedia document until an information architecture acceptable to most of

the actors is evolved.

1.2.3 Localized Synchrony of Social Interactions

Even though social interactions take place within both, repository spaces

and social spaces, they differ in terms of synchrony. In a repository space,

argumentations and cogitations take place through the use of links and cita-

tions. However, since the entire repository space represents a single SCP, it

is difficult to track documents pertaining to a given topic, so that further ar-

gumentations can be made about it by autonomous actors creating their own

documents that cite existing documents. Thus, social interactions regarding

a given topic in a repository space are typically spread over time in an asyn-

chronous fashion, owing to their non-localized nature. On the other hand, in

a social space, the thread of discussion on a given topic is limited to one or

more localized SCPs, which the user is participating in. Thus, it is easy to

track SCPs pertaining to a given topic, so that further argumentations and
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cogitations can be made about it. Due to this, the social interactions in an

SCP in a social space are typically synchronous. In other words, CPs are

executed inside such an SCP within short durations of each other, giving the

impression that a focused discussion is taking place within the SCP and that

the CPs are “in tune with each other”.

Example for Repository Spaces Consider a research paper A being

published in a digital library on a given topic. Assume that research paper A

is a critique of an existing research paper B. Since there was no specific, well-

defined boundary (or “container”) relating to B within which the critique

presented by A could be posted, A was created as a separate document in

the repository. Here, the repository itself is the “container” – the boundary

within which an article should be posted is defined only by the boundaries

of the repository. In other words, the social interactions between A and B

would have to span the entire repository, and are therefore not localized.

Now, it becomes difficult for the author of B to follow and to respond to A’s

arguments (and vice-versa, as time progresses). The scope of the discussion

between A and B is unfocused, as the discussion takes place in “silos” (i.e.

through the creation of more and more new documents) inside the repository

space. This causes the social interaction in a repository space to spread over

time and also become asynchronous.

Example for Social Spaces Consider a blog post on a given topic. For

an actor interested in this topic, it is straight-forward to keep track of the

developments in the discussions related to that post. This is because the
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developments relating to that post take place through the use of comments,

backtracks and votes in the context of the post itself. In other words, social

interactions relating to this topic would then be localized to the blog post

itself, and not the entire blogosphere. This makes it easy to follow the topic,

and provide one’s own world-views on that topic in short periods of time.

Hence, comments and backtracks on the blog post are usually synchronous,

and discussions appear to be focused.

Based on the above observations, we can draw the following interpretation

about repository spaces and social spaces: While a social space is character-

ized by the existence of several focused, synchronous SCPs, a repository space

can be seen as representing a single broad-scoped, asynchronous SCP in its

entirety.

Figure 1.1 summarizes the difference between repository spaces and social

spaces in terms of the nature of cognitive process and their social interactions.

It may be noted that, in addition to the above differences, repository

spaces and social spaces can also be distinguished in terms of a priori well-

understood ontological associations assumed by the population. In an SCP

within a social space, the population typically holds some assumed onto-

logical associations of some concepts. For instance, in a forum-thread on a

technology forum like Slashdot, the population implicitly assumes that the

term “Apple” refers to the consumer electronics company and not the fruit.

In contrast, the population in a repository space tends not to have such a

priori assumptions about ontological associations of concepts in their CPs.
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Figure 1.1: Illustration of the differences between repository spaces and social
spaces

1.3 Semantics in Information Spaces

We now formally define repository spaces and social spaces.2 These formal

models also explain how semantics are embedded in information spaces as

2The work on formal modeling of social spaces was partly done in collaboration
with [Mani, 2011].
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world-views of actors.

1.3.1 Repository Spaces

A repository space is formally defined as:

SR = (AR, pR, CR,WR) (1.1)

where (i) AR is the set of actors in the repository space, (ii) pR is a single

SCP capturing the social interactions of the entire space, (iii) CR is a set of

cognitive contexts (representing individual cognitive processes) that define

cognitive activities such as document creation/editing, and (iv) WR is the

shared or “global” world-view of the actors across the space.3

Each actor in a repository space basically represents a local or individual

world-view, and is modeled as:

∀a ∈ AR, a = (VR, εa, R) (1.2)

where (i) VR is a set of concepts such as documents, topics and named en-

tities within the repository space, (ii) R is a set of ontological relationship

types (e.g., is-relevant-to, is-important-in-the-context-of, is-an-endorsement-

of, etc.), while εa ⊆ VR × R × VR is a set of semantic associations defining

the local world-view.

Based on this, the global world-view WR is defined as a semantic network

(or ontology) in the form of a labeled multi-graph:

3It may be noted that multiple global world-views could emerge in an information space
in isolation on a given topic.
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WR = (VR, ε, R) (1.3)

where ε ⊆ VR × R × VR is the “global” set of semantic associations shared

by the population of actors in general. While the global set of semantic

associations held by the population is an aggregation of the semantic asso-

ciations that are individually held by all the actors, it is not always a union

of the individual semantic associations. For example, actor a could hold a

semantic association such as ”the Samsung phone is the best in the class of

smart-phones”. However, not every semantic association held by every actor

is globally held by the population at large. For example, the global world-

view held by the population need not reflect actor a’s world-view that the

Samsung phone is the best in the class of smart-phones. We assert that the

aggregation of the individual semantic associations is an emergent process

in both, repository spaces and social spaces, resulting in the global set of

semantic associations held by the population.

For a repository space, a cognitive context c ∈ CR is defined as a set of

concepts that have occurred together within a given boundary, c ∈ 2VR . For

the purposes of analytics, the boundary of a cognitive context can be defined

in terms of a paragraph, a passage, an entire document, etc.

The socio-cognitive process pR representing the social interactions of the

entire space is represented as a sequence of cognitive contexts, pR ∈ CR
∗.

For instance: (i) the Web represents an SCP (i.e. a repository), where each

document represents a cognitive context and links between documents rep-

resent social interactions between cognitive contexts; here, the actors are
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the individual authors of web pages, (ii) a digital library such as CiteSeer4

represents a single SCP, with each scholarly paper as a cognitive context in-

teracting with other papers through citations; here, the authors of the papers

are the actors in the space.

In a repository space, while social interactions between cognitive processes

may lead to the emergence of commonly held “world-views” of the population

at large, the individual cognitive processes themselves do not arise from any

form of social consensus. These CPs are executed by a single actor,5 and

represent the local world-view of the individual actor. However, the social

interactions between the CPs do result in emergent global world-views within

the repository space. For instance, a Web search engine might be interested in

knowing web pages or magazine articles that the population seems to consider

most relevant to the topic of “Apple iPhone 4S”. Similarly, a focused crawler

would benefit from finding out which hyperlinks from its current web page

are considered most relevant to a given topic.

1.3.2 Social Spaces

A social space is formally defined as:

SS = (AS, PS, CS,WS) (1.4)

where (i) AS is the set of actors in the social space, (ii) PS is a set of socio-

cognitive processes, (iii) CS is a set of “socio-cognitive contexts” defining a

4http://citeseer.ist.psu.edu/
5Or by a group of actors who are in agreement with each other beforehand about the

information architecture of the CP, and can therefore be viewed as a single entity

http://citeseer.ist.psu.edu/
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topical sub-unit in a socio-cognitive activity, and (iv) WS is the shared or

“global” world-view of the actors.

Each actor in a social space basically represents a “local” or individual

world-view, and is modeled as:

∀a ∈ AS, a = (VS, εa, R) (1.5)

where VS is a set of concepts and R is a set of ontological relationship types

(e.g., is-a, is-in, is-an-attribute-of, etc.), while εa ⊆ VS × R × VS is a set of

semantic associations defining the local world-view.

Based on this, the global world-view WS is defined as a semantic network

(or ontology) in the form of a labeled multi-graph:

WS = (VS, ε, R) (1.6)

where ε ⊆ VS × R × VS is the global set of semantic associations shared by

the population of actors in general.

A socio-cognitive context c ∈ CS is defined as a set of concepts that have

occurred together within a given boundary, c ∈ 2VS . For the purposes of

analytics, the boundary of a socio-cognitive context can be defined variously

in terms of a paragraph, an article-section, a comment, a status message,

etc., depending upon the underlying social space.

A socio-cognitive process p ∈ PS is simply represented as a sequence of

socio-cognitive contexts, p ∈ CS∗. For instance: (i) a wiki page represents an

SCP, where each paragraph represents a socio-cognitive context; here, the ac-

tors are the various contributors who collaboratively edit content, (ii) a blog
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post along with its comments represents an SCP where each paragraph in the

post and each comment note represent a socio-cognitive context; here, the

blogger herself and the various commenters are the actors. Socio-cognitive

contexts are so called because, contrary to a repository space, the social in-

teraction between cognitive contexts in a social space take place within the

well-defined social boundaries of an SCP.

Moreover, these social interactions are synchronous. For instance, the

comments written in response to a blog post are not only contained within

the boundary of its own SCP, but also typically occur within short time-

spans of each other. Thus, a single blog post, together with its comments,

represents an independent SCP containing the aggregated world-views of the

actors who participated in it. The blog post along with its comments can be

collectively seen to have given rise to an aggregated information architecture

evolved through social consensus between various actors (i.e. authors and

commenters). SCPs contain semantics latent within them. For instance, a

blog post on the topic of “Apple iPhone 4S” could have elicited several com-

ments containing positive and negative reviews of the product. Therefore, a

large set of such SCPs on the topic of “Apple iPhone 4S” could contain a

“global” world-view of the population at large about the product (which the

population itself may not be conscious of).

1.4 Mapping the Problem Domain

In this chapter, we have identified two classes of information spaces, namely

repository spaces and social spaces. As described earlier, there exist sev-
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eral differences between these two classes of information spaces. However, a

commonality between these two spaces is that content is generated by the

cognitive processes of humans. These cognitive processes essentially give

rise to a series of cognitive contexts, which contain concepts such as named

entities and topics. Also, there exist social interactions between cognitive

contexts in both these spaces (e.g., comment replies to blog posts, citations

to other documents, etc.).

In other words, there are two kinds of “artifacts” that both, repository

spaces and social spaces, are associated with: concepts and social interac-

tions. Semantics could be mined using either or both of these artifacts in an

information space. The problem domain can therefore be mapped as shown

in Table 1.1. Here, the columns correspond to the artifacts, while the rows

correspond to the information spaces.

In this thesis, we address only a subset of this problem domain. In Chap-

ter 4, we address the problem of semantics extraction in repository spaces

such as scientific literature corpora and the Web, where the artifacts of inter-

est to us are citations between documents, which define the social interaction

between the cognitive contexts defining the documents.6 In Chapter 5, we ad-

dress the problem of semantics extraction in social spaces such as Wikipedia,

where the artifacts of interest to us are concepts defined by named entities

(or noun phrases) contained in the cognitive contexts of that space.

We now briefly introduce the specific pain points that we address in this

thesis, in terms of semantics extraction in repository spaces and social spaces.

6Here, we collectively use the term citation to mean hyperlinks in Web-based informa-
tion systems as well as citations in scientific literature.
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Concepts Social Interactions

Repository Spaces E.g., (i) Building
topic maps of sci-
entific literature on
Arxiv, (ii) Finding
related documents
on the Web, etc.

E.g., (i) Finding
important articles
in CiteSeer using ci-
tations, (ii) Finding
important citations
themselves on the
Web, etc.

Social Spaces E.g., (i) Finding the
semantic attributes
of a named entity
in Wikipedia, (ii)
Finding semantic
siblings of a term in
Twitter, etc.

E.g., (i) Finding
important conversa-
tions on Facebook
or GMail using com-
ments, replies and
“likes”, (ii) Extrac-
tion of hierarchical
structures based on
trust/distrust pat-
terns between actors
in a signed network
like Slashdot Zoo,
etc.

Table 1.1: Semantics extraction in information spaces: The problem domain

1.4.1 Pain Points

Endorsed Citations in Repository Spaces

Consider a topical surfer in a repository space such as the ACM Digital

Library (DL), who is interested in the topic of Signed Networks. Suppose she

begins surfing from the ACM DL page on the paper Signed networks in social

media,7 and hopes to continue surfing on this topic by following outgoing

citations from this paper. However, the outgoing citations from this paper

7http://dl.acm.org/citation.cfm?id=1753532

http://dl.acm.org/citation.cfm?id=1753532
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are not uniformly relevant to the topic of Signed Networks. For instance, this

paper cites (among others): (i) a paper entitled Social capital in the creation

of human capital, which has its roots in sociology and economics, and (ii) a

paper entitled Structure balance: A generalization of Heiders theory, which

has its roots in Graph Theory. While the former is definitely relevant to the

topic of Signed Networks, it can be argued that the latter is more relevant

to this topic. Our topical surfer is likely to follow outgoing citations based

on the topical relevance of the target document to the source document.

In order to differentiate the topical relevance of outgoing citations from a

given document, we rely on the co-citation patterns of the source and target

documents of the given citation. We term such citations, which are topically

relevant, as “endorsed” citations. We also quantify the degree of endorsement

of a citation in terms of an endorsement probability.

Essentially, we contend that not all social interactions within a reposit-

ory space are topically relevant or uniformly important. Endorsed citations

can be used to guide topically focused crawlers too. We also use the idea

of citation endorsement for topically ranking documents in a repository sp-

ace. In literature, there do exist approaches for topically ranking documents

(c.f. [Haveliwala, 2003; Kleinberg, 1999; Lempel and Moran, 2001]). How-

ever, these approaches do not distinguish between outgoing citations from

a document, considering them to be uniformly relevant. Also, traditionally,

topical ranking approaches have considered documents as artifacts of interest,

with a focus on finding “important” documents using the citation structure

(c.f. [Abiteboul et al., 2003; Page et al., 1999]). In contrast to this, we focus

on mining important citations themselves [Mutalikdesai and Srinivasa, 2010],
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and then using them to track documents of interest.

Object-Attribute Relationships in Social Spaces

Consider a product strategist trying to identify what concepts the popu-

lation at large uses in describing the product iPad in a social space like

Twitter. Assume that such an analyst would be interested in identifying a

set of terms or “attributes” that, according to the population, collectively

characterize the product uniquely. The analyst could use such information

for Internet marketing or Adwords-like online advertising placement.8 Given

an “object” like iPad, we define as its attributes those terms that collectively

help in describing it uniquely, and each of which describes at least one of its

properties.

It may be noted that not all terms that are topically relevant to the object

can be its attributes. For instance, the terms iPhone, iPad Mini, Galaxy

Tab, etc. are topically relevant to iPad. However, they do not describe

iPad uniquely, as the same set of terms is relevant to Aakash tablet as well.

Hence, these terms do not constitute the attributes of iPad. Therefore, topic

modeling approaches such as Latent Dirichlet Association (LDA) [Anthes,

2010; Blei and Lafferty, 2007; Blei et al., 2003; Hofmann, 1999a] are not

ideally suited for mining the attributes of an object in a social space.

In order to mine concepts that are deemed by the population at large

to be semantic attributes of a given object, we rely on exploiting the co-

occurrence patterns of concepts within cognitive contexts inside a social sp-

ace. In addition to the above example, mining object-attribute relationships

8http://adwords.google.com/

http://adwords.google.com/
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finds applications in various forms of analytics and decision support, such as:

(i) a market research analyst attempting to classify various Android phones

based on the terms used to describe them by the population, and (ii) an aca-

demic researcher surfing on social bookmarking systems like delicious.com,

trying to find articles “similar” to a given article in terms of their attributes.

In this thesis, we model the problem of mining semantics in information

spaces in terms of mining the “global” or shared world-view of the population,

which are embedded within an SCP. In order to mine such semantics, we use

co-occurrence analysis, which is described in detail in Chapter 3. We posit

that the co-occurrence patterns of concepts not only allow us to identify

the meanings associated with the concepts, but also to identify the “type” of

meaning they carry with respect to each other. In other words, co-occurrence

analysis not only helps in the identification of latent semantics in information

spaces, but also in identifying semantic labels.

1.5 Contributions of this Thesis

The contributions of this thesis can be summarized as follows:

• Modeling semantics extraction in information spaces

– Distinction between repository spaces and social spaces as two

classes of information spaces

– Formal models for repository spaces and social spaces

– Casting the problem of semantics extraction in information spaces

as mining the global world-views of the population
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– Motivation for the use of co-occurrence analysis for mining the

world-views of the population

• Co-occurrence based semantics mining from the linkage structure in

repository spaces

– Interpretations of co-citations (co-occurrences of citations)

– Notion of “endorsed” or important citations based on co-citation

structures

– Quantification of citation endorsements

– Document ranking model based on endorsed citation structure

– Exploratory study of the properties of networks formed due to

endorsed citations

• Co-occurrence based semantics mining in social spaces

– Definition of object-attribute relationships

– Co-occurrence-based hypotheses for detecting attributes, defined

in terms of:

∗ “usability” of an attribute along with the object

∗ positive probabilistic dependence of an attribute on the oc-

currence of the object

1.6 Organization of this Thesis

The rest of this thesis is organized as follows.
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• Chapter 2 provides a detailed survey of literature pertinent to the work

done in this thesis, and also positions co-occurrence analysis as our

methodology for mining semantics.

• Chapter 3 provides the philosophical underpinnings for using co-occurrence

analysis for semantics extraction in information spaces.

• We then focus our attention on mining semantics in repository spaces.

In Chapter 4, we present various interpretations about what the co-

occurrence of links/citations could mean. We then describe in detail

one of these interpretations – co-citations as citation endorsements. We

also describe how the notion of citation endorsements can be used for

ranking documents in a repository space.

• We then turn to the problem of mining semantics in social spaces. In

Chapter 5, we define the problem of mining object-attribute associa-

tions in social spaces. We propose two hypotheses for mining object-

attribute associations based on co-occurrence analysis.

• We provide concluding remarks on the problem of mining semantics in

information spaces in Chapter 6.



2
Related Literature

In this thesis, our work can be seen as being composed of three main parts:

• Modeling of semantics as the world-views of a population (in reposit-

ories and social spaces), and the use of co-occurrence analysis models

for extracting such semantics. (Chapters 1 and 3)

• The analysis of co-occurrence patterns of interactions (i.e. citations) in

repository spaces, for the task of extracting semantics. In particular, we

23
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address the problem of extracting endorsed interactions. (Chapter 4)

• The analysis of the co-occurrence patterns of concepts (i.e. named

entities in text) in social spaces, for the purpose of extracting semantics.

In particular, we address the problem of extracting object-attribute

relationships. (Chapter 5)

In this chapter, we survey literature relating to the above aspects of this

thesis. This literature survey is, therefore, structured as described below.

In Section 2.1, we survey literature pertaining to the first part of this the-

sis, and position our motivation to use co-occurrence analysis in this thesis.

This is followed by a survey of research in semantics extraction and infor-

mation retrieval using co-occurrence analysis, in Section 2.1.2. Here too, we

position our work with respect to existing approaches. In Section 2.2, we

survey literature pertaining to the second part of this thesis, and position

our work on endorsed citations. Finally, in Section 2.3, we address literature

pertaining to the third part of this thesis, and position our work on detecting

object-attribute relationships in social spaces.

2.1 Models for Semantics Extraction

We have modeled the problem of mining semantics as the problem of mining

global world-views of the population in an information space. We use co-

occurrence analysis as the methodology for mining such semantics. Two

concepts in an information space are said to have co-occurred if they occur

together within one or more cognitive contexts.
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We first describe the existing approaches for mining semantics, outlining

their shortcomings. We then introduce the motivation for using co-occurrence

analysis for mining semantics, in comparison with existing approaches.

2.1.1 Existing Approaches for Semantics Extraction

The existing approaches for semantics extraction can be broadly classified

into the following:

1. Dimensionality Reduction

2. Machine Learning

3. Generative Models

4. Network Models

Dimensionality Reduction

In dimensionality reduction approaches, the documents in the underlying

corpus are represented as vectors over the set of all terms in the corpus. The

entire corpus can thus be viewed as a collection of d column vectors (or d

points in an t-dimensional space) with the t terms as dimensions (i.e. as a

t× d term-document matrix).

Dimensionality reduction techniques work on the premise that documents

do not uniformly occupy the entire space offered by all the dimensions; in-

stead, documents occupy dense subspaces of the t-dimensional space, and

are spaced closely. Hence, correlated terms (i.e. correlated dimensions) are

collapsed using dimensionality reduction techniques such as singular value
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decomposition (SVD), thus bringing semantically related terms closer to one

another. Examples of such techniques include Latent Semantics Indexing

(LSI) and its variants [Deerwester et al., 1990; Song and Park, 2007; Steyvers

and Griffiths, 2007].

[Deerwester et al., 1990; Hofmann, 1999a,b; Steyvers and Griffiths, 2007]

proposed the technique of LSI. They argued that semantically related terms

(e.g., {car, automobile} or {pet, cat}) tend to co-occur within documents,

thus leading the documents to occupy only semantically meaningful sub-

spaces of the document space rather than the entire document space. They

applied singular value decomposition to the term-document matrix and pro-

posed a model for querying a smaller multi-dimensional space. However,

while dimensionality reduction techniques succeed in identifying terms or

concepts that are semantically associated with one another, they do not

seem to be able to label the semantic association itself.

In order to describe our choice of co-occurrence analysis as the tool of

interest in semantics extraction, we draw insights from the fields of Ordi-

nary Language Philosophy (OLP) [Wittgenstein, 1953] and Cognitive Sci-

ence [Foundalis, 2006]. OLP argues that the commonsense meaning ac-

quired by a term is dependent on its usage context. In other words, the

co-occurrence patterns of terms defines the meaning they acquire. Comple-

mentary to this argument, the Hebbian Theory of cognitive perceptions states

that the human brain forms associations between observed concepts based on

their co-occurrences with other concepts across a large number of “episodes”

or occurrence contexts. In Chapter 3, we present detailed arguments that co-

occurrence analysis is a manifestation of OLP as well as the Hebbian Theory.
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We also argue that co-occurrence analysis goes beyond establishing just the

meaning acquired by a concept within its occurrence context. Co-occurrence

analysis also models the type of meaning acquired by a concept in relation to

other concepts in its occurrence context. That is, co-occurrence analysis also

models the labels of semantic associations existing between concepts, which

define the world-view of the population in that space.

Machine Learning

Machine learning approaches typically use techniques like supervised learn-

ing, unsupervised learning and association rule mining for mining seman-

tics such as classes, clusters and term associations from the underlying cor-

pora [Agrawal et al., 1993; Ciaramita et al., 2005; Harish et al., 2010; Pang

et al., 2002; Sebastiani, 2002].

Unsupervised learning approaches (e.g., [Ciaramita et al., 2005]) are suc-

cessful in identifying clusters of semantically associated concepts based on

observing patterns within the data. Similarly, supervised learning approaches

have been used to identify semantic associations such as sentiments and opin-

ions [Mullen and Collier, 2004; Pang and Lee, 2008; Pang et al., 2002] based

on patterns observed in a training dataset. Association rule mining [Agrawal

et al., 1993] can be seen as a special case of mining semantic associations.

However, none of these learning approaches necessarily explain why the

observed patterns result in the mined associations. In contrast, we use co-

occurrence analysis to mine semantics in terms of the global world-views of

the population in an information space. The observed co-occurrence patterns

result in semantics, because those semantics are embedded in the information
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space by way of cognitive activities of actors. The co-occurrence patterns

essentially encode the manner in which various concepts and their semantic

associations are used by actors across cognitive contexts.

Generative Models

Generative models such as Latent Dirichlet Association (LDA) are popularly

used to address the problem of topic modeling in a large corpus [Anthes,

2010; Blei and Lafferty, 2007; Blei et al., 2003; Hofmann, 1999a]. These

topics are not known in advance, and are hence postulated using a hidden

structure, which is then learned using posterior probabilistic inference.

In essence, a topic is defined as a probability distribution over words. A

topic model is seen as a generative model for a document collection, where

documents are assumed to be generated according to some elementary lan-

guage model such as a hidden markov model [Andrews and Vigliocco, 2010],

a bi-gram language model [MacKay and Peto, 1995], etc.

Estimating these topic distributions can be seen as a form of semantic

association mining. However, parameter estimation in generative models

is based on iterative optimization, and may converge to local optima, thus

causing the convergence to vary across different experiments for the same

corpus. On the other hand, modeling the co-occurrence patterns of concepts

within an information space is not an optimization problem, and hence does

not suffer from problems like convergence to local optima.
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Network Models

Network models represent a corpus as a graph, where the nodes represent

terms or entities, and edges represent relationships between the entities. Sev-

eral network models for document retrieval and speech disambiguators [Ce-

glowski et al., 2003; Dagan et al., 1999, 1994] do not associate semantics with

these relationships.

Semantic networks, in particular, represent the underlying corpus as a

graph, where the edges represent the observed semantic relationships between

terms [Glöckner et al., 2006; Quillian, 1968; Shapiro, 2000]. The relationships

are captured using shallow parsing techniques scanning sentences for gram-

matical syntax [Carreras and Màrquez, 2005; Coppola et al., 2008; Pradhan

et al., 2003]. Over such networks, graph-theoretic analyses like centrality,

reachability, graph clustering, etc. can be used to extract further semantic

associations.

However, the associations discovered using grammatical parsing tech-

niques are heavily dependent on the linguistic structure of the documents

in the corpus. On the other hand, the co-occurrence of concepts within a

cognitive context is independent of linguistic structures. Therefore, modeling

co-occurrence patterns does not involve grammatical parsing.1

We now survey relevant literature on the use of co-occurrence analysis

itself as a methodology for semantics extraction.

1It may be noted that we model the co-occurrences of named entities or noun phrases
in a text corpus. Grammatical parsing may be required for identifying the named entities
or noun phrases. However, we use off-the-shelf algorithms or libraries for this task. This
is not a part of the actual problem addressed in this work. In this work, we look to mine
semantic associations between the named entities or noun phrases.
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2.1.2 Co-occurrence Analysis for Semantics Extraction

Co-occurrence analysis has been used in information retrieval and seman-

tics extraction since long. In 1977, [van Rijsbergen, 1977] proposed to use

co-occurrence data from text corpora to mitigate the term-independence as-

sumption commonly employed in traditional IR systems. He argued that, in

reality, terms are not independent of one another. He captured the extent of

dependence of two terms (upon each other) in terms of their co-occurrences.

[McDonald and Ramscar, 2001] experimentally verified the distributional

hypothesis. [Rohde et al., 2004] also used co-occurrence analysis to derive

the meanings of words in text corpora. [Terra and Clarke, 2003] used word

co-occurrence to analyze the similarity of words in text corpora.

[Rapp, 2002; Wettler and Rapp, 1993] proposed a stochastic model for

predicting the mental association of words using their co-occurrences in

large text corpora. [Lund and Burgess, 1996; Lund et al., 1995] used a co-

occurrence-based high-dimensional semantic space to model semantic mem-

ory. They too observed strong associations between pairs of words whose

co-occurrence vectors clustered semantically according to multidimensional

scaling. The above works are consistent with the principle of Hebbian Learn-

ing [Hebb, 1949].

[Patel et al., 1998] investigated the modeling of semantic representations

in languages using co-occurrence statistics from large text corpora. [Sahlgren,

2006] proposed a model for semantic similarity of words, called the word-

space model, based on lexical co-occurrence. [Veling and van der Weerd,

1999] used term co-occurrence patterns for resolving the word-senses (poly-
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semy) of users’ queries in an information retrieval system. They argued that

capturing the co-occurrence patterns of the terms helps in grouping together

terms that have semantic coherence.

It is interesting to note that dimensionality reduction models like LSI also

model co-occurrences of terms [Deerwester et al., 1990; Hofmann, 1999a,b;

Steyvers and Griffiths, 2007]. However, LSI is primarily aimed at conducting

full-text querying in a term-document space with a reduced number of di-

mensions. LSI does not address the problem of mining the labels of semantic

associations between terms.

[Rachakonda and Srinivasa, 2009a,b] used lexical co-occurrence patterns

to identify the “topical anchors” of a given context. They defined topical an-

chors as terms whose semantics represent the topicality of the entire context.

[Essen and Steinbiss, 1992] addressed the problem of parameter smoothing

for maximum likelihood estimation in stochastic language models. They

used a term co-occurrence matrix as the confusion matrix for smoothing the

conditional term probabilities of the language model. [Dagan et al., 1999,

1994] addressed the problem of likelihood estimation of word combinations

for natural language processing applications using word co-occurrences.

In addition to lexical co-occurrence, several other forms of co-occurrence

have also been analyzed. Association rule mining [Agrawal et al., 1993] can

be seen as a form of co-occurrence analysis, wherein the goal is to mine sets of

items that co-occur frequently within a database of transactions. Structural

motifs such as co-linking/co-citation and co-tagging can also be seen as forms

of co-occurrence (of URLs/citations and tags, respectively) (c.f. [Jin et al.,

2009; Mutalikdesai and Srinivasa, 2010; Small, 1973, 1993]).
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Co-occurrence analysis has also found applications in the life sciences.

[Maskery et al., 2006] have used co-occurrence analysis to discover novel

patterns of pathology for breast cancer. Similarly, [de Ridder et al., 2007]

used co-occurrence analysis to discover a significant number of cooperating

gene mutations, which play a role in the development of cancerous tumors.

In our work, we argue that co-occurrence analysis has its philosophical

basis in the Ordinary Language Philosophy and Hebbian Learning. In con-

trast to the above works, we also argue that co-occurrence analysis helps

not only in identifying the meaning acquired by a concept within a given

context, but also in identifying the label of its meaning (or association type)

with respect to other concepts within that context.

2.2 Co-citation Analysis in Scientific Litera-

ture and the Web

As mentioned earlier, we are interested in the co-occurrence patterns of in-

teractions between documents in a repository space. In particular, we look to

study the co-occurrence patterns of interactions in order to mine “endorsed”

interactions in the repository space. Interactions in repository spaces are

typically established through the use of citations between documents. In

Chapter 4, we explore the notion of endorsed citations, which are essentially

citations that are “more important” than other citations that emanate from

the same source. This stems from our position that not all outgoing citations

from a document are uniformly important. We posit that interactions be-
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tween documents in a repository space are non-uniformly important. There-

fore, we look at analyzing co-citations, i.e. the co-occurrence of citations,

between pairs of documents in order to mine endorsed citations.

Co-citation analysis has long been employed in traditional scientific lit-

erature to discover meaningful insights from a literature corpus, e.g. to dis-

cover clusters of related articles, journals and authors. In 1973, [Small, 1973]

analyzed co-citations in Particle Physics literature. He found that a high

degree of co-citation is a better indicator of topical relatedness than biblio-

graphic coupling. [Small, 1993] also studied the changes in the structure of

co-citation graphs of scientific literature over six years, thus making inter-

pretations about the growth of a topic of study.

[White and Griffith, 1981] studied author co-citation graphs of Informa-

tion Science literature over seven years. They were able to map: (1) identifi-

able clusters of authors with similar interests, (2) topical proximity of clusters

to one another, (3) centrality of authors in each cluster, and (4) proximity

between authors within and across clusters. [Saka and Igami, 2007] used co-

citation analysis to generate a topic map of Modern Science and to analyze

how various research areas are related to each other.

[White and McCain, 1998] presented a comprehensive domain analysis of

the Information Science discipline using author co-citation. They presented

several insights such as specialty structure of Information Science across 24

years, authors memberships in one or more specialties, changes in authors

influence and eminence over various sub-periods, changes in the subject in-

terests of authors, etc. [Cottrill et al., 1989] analyzed author co-citations in

Innovation Research Traditions literature and identified cognitive relations
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between the works of two specialties of this discipline, viz. diffusion of inno-

vations and technology transfer.

[Zhao, 2005] analyzed author co-citations by considering the first five

authors of a cited paper. This is in contrast to some of the traditional

methods, where only the first author of a paper is considered in the co-citation

graph. Zhao reported more coherent author clusters using five-author co-

citation compared to only first-author co-citation. However, Zhaos approach

represented fewer specialties in the field whose literature was being studied,

in contrast to the traditional approach of analyzing first-author co-citation

graphs.

Co-citations have also been analyzed in the context of the World Wide

Web to discover pages with related content. [Dean and Henzinger, 1999] pro-

posed that two pages are related if they are highly co-cited, an idea endorsed

by [Davison, 2000] as well. [Hou and Zhang, 2003] also used co-citations

to find semantically relevant pages. [Reddy and Kitsuregawa, 2001] used

co-citations to discover Web communities.

Hyperlink-Induced Topic Search (HITS) [Kleinberg, 1999] utilized the

bipartite structures at the core of Web communities to determine good hub

pages and authority pages pertinent to a given query. These bipartite cores

correspond to co-citations of authorities by hubs. [Jeh and Widom, 2002]

used a broader structural context beyond co-citations to define a measure of

similarity, known as SimRank, between two given nodes in a graph. They

introduced a recursive intuition of similarity: two nodes are similar if they are

referenced by similar nodes. The base case here is that nodes are maximally

similar to themselves.
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[Efron, 2004a,b] used co-citations to determine the political orientation of

web pages, viz. left-wing or right-wing. Based on the likelihood that a given

document is co-cited with documents of a known political orientation, he

modeled the extent to which the given page has the same political orientation.

[Thelwall and Wilkinson, 2004] used co-citations along with bibliographic

couplings and direct citations to find similar websites within the UK academic

Web.

[Vaughan et al., 2007] examined why websites are co-cited – with Cana-

dian universities as the case in point – and discovered that two co-cited uni-

versities were academically related with high probability. [Vaughan, 2006]

also used co-citations to show the linguistic and cultural differences in the

way Canadian universities are perceived by the population. [Vaughan and

You, 2006] hypothesized that the number of co-citations to a pair of business

websites is a measure of the similarity between the two businesses. Since

similar businesses are competitors, Vaughan and You argued that co-citation

data can be used to map business competitive positions.

[Larson, 1996] used co-citations as a measure of relatedness of pages, and

visualized clusters of related pages on various topics like Geophysics, Climate,

Remote Sensing and Ecology using multi-dimensional scaling. [Pitkow and

Pirolli, 1997] also used co-citations for clustering web pages.

[Moise, 2003] proposed the idea of “focused co-citations”. She argued

that due to the presence of several web pages with no particular topical

focus, just counting the number of co-citations between pairs of pages is not

a good enough measure of relatedness. She proposed that given a page A,

any other page B that is co-cited with A should contribute to the topical
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focus of A proportionally to the joint probability of co-citation of A and B.

In other words, TopicalFocus(A) =
∑
B

|AI ∩BI |
|AI ∪BI |

, where AI is defined as

the set of pages that cite A.

In comparison to existing literature on co-citation analysis in repository

spaces, we look towards using co-citations as a distinguishing feature for

citations from a given document. The “distinguished” citations form the

topical “backbone” of the underlying repository space, which can then be

used for focused resource discovery.

2.3 Detection of Object-Attribute Relation-

ships

In Chapter 5, we address the problem of mining semantic relationships from

social spaces by analyzing the co-occurrence patterns of named entities within

the text. In particular, we look at the problem of mining object-attribute

relationships. We now review literature relevant to this problem from the

following perspectives:

1. Attribute Labeling

2. Ontology Learning and Building

3. Attribute Detection of Actors in Social Media

4. Commonsense Knowledge Acquisition

5. Relationship Mining
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2.3.1 Attribute Labeling

There exists a body of work on extracting data records (e.g., product infor-

mation) from web pages and labeling them with their attributes (e.g., name,

description, price) (c.f. [Zhu et al., 2005, 2006]). We model the problem of

attribute assignment differently from these approaches. First, we formally

define the notion of social spaces, and look at the problem of attribute de-

tection in terms of understanding the shared world-view of actors about the

concepts (e.g., noun phrases) in the social space. In contrast to the attribute

labeling task in the above works, the attributes that a population assigns

to concepts in a social space are emergent semantics. Also, these attributes

typically do not follow fixed templates and are highly unstructured.

2.3.2 Ontology Learning and Building

The extraction of semantic associations can be interpreted as ontology learn-

ing from social spaces. There have been several efforts towards ontology

learning from text corpora (c.f. [Buitelaar et al., 2005]). Among these works,

[Poesio and Almuhareb, 2008] particularly address the problem of learning

concept descriptions from text, based on the attributes of the concepts. Since

their work is based on text corpora, they use textual patterns and dependency

parsing for identifying attributes. In contrast, we concentrate on building an

ontology of object-attribute relationships using only the co-occurrence of con-

cepts. The use of co-occurrence analysis makes our techniques generic enough

for mining object-attribute relationships in various kinds of social space data

– text-based (wikis, blogs, etc.) as well as metadata-based (tags, labels, etc.).
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Recent efforts have also been focused on building ontologies derived from

folksonomies. [Mika, 2007] presents a tripartite model of ontologies for

semantic social networks, comprising actors, concepts and instances. He

demonstrates the building of light-weight ontologies of concepts (tags) and

social networks of actors using this model. In comparison, we propose a

model for social spaces in terms of the socio-cognitive processes of actors,

and address the problem of mining the shared world-view of the population

in terms of object-attribute relationships. There also exist several approaches

that address the problem of building tag hierarchies (i.e. taxonomies com-

prised of generalization-specialization relationships) from social tagging sys-

tems [Benz et al., 2010, 2011; Heymann and Garcia-Molina, 2006; Schmitz

et al., 2006; Schwarzkopf et al., 2007]. In contrast to these approaches, we

look to build ontologies consisting of object-attribute relationships rather

than taxonomical relationships.

2.3.3 Attribute Detection of Actors in Social Media

In the realm of social spaces, some effort has recently been focused on detect-

ing the attributes of social media users, where these users’ attributes (e.g.,

ethnicity, gender) are latent within their tweets and status messages [Rao

et al., 2011; Rao and Yarowsky, 2011]. As we have explained earlier in this

thesis, these users (or actors) are a part of the definition of social spaces.

In contrast to the approaches of [Rao et al., 2011] and [Rao and Yarowsky,

2011], rather than looking at the attributes of these actors themselves, we

look at the “global” world-view held by the population of these actors about
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various concepts within the social space, in terms of the attributes of the

concepts.

2.3.4 Commonsense Knowledge Acquisition

Another body of work relevant to ours is commonsense knowledge acqui-

sition (c.f. [Barbu, 2009; Blanco et al., 2012; Cao et al., 2008; Chklovski,

2003]). Commonsense knowledge includes predicates such as “a container

can hold liquids” and “a laptop is a computer”. In our work, we look to

mine predicates which particularly capture object-attribute relationships be-

tween concepts in social spaces. We view these object-attribute relationships

as emergently reflecting how the population describes an object.

Mining such attributes can be seen as a commonsense knowledge acquisi-

tion activity. However, the commonsense knowledge obtained in this process

pertains to the meaning attached to an object by the population in a social

space. The association of an attribute with an object need not itself be com-

monsensical in nature. However, the attributes collectively lend an identity

to the object, which, from the population’s perspective, can be deemed as

being commonsensical.

2.3.5 Relationship Mining

Relationship mining is another area which is relevant to our work. Mining

object-attribute relationships can be seen as a type of relationship mining

activity. Association rule mining [Agrawal et al., 1993] has traditionally been

seen as a special case of relationship mining, where the relationships to be
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mined are the frequent associations between items. The popular Entity-

Relationship model [Chen, 1976] for database modeling, commonly known

as the ER-model, captures relationships between entities in real-world data.

[Pradhan et al., 2003] addressed the problem of annotating unstructured

text sentences with simple role-based relationships such as “who did what

to whom”, using shallow semantic parsing. [Carreras and Màrquez, 2005;

Màrquez et al., 2008] and [Coppola et al., 2008] also addressed the problem

of semantic relation mining from the syntactic parse tree of text. [Kas-

neci et al., 2009] proposed a method called MING for discovering “infor-

mative” subgraphs from entity-relationship graphs (such as social networks,

domain-specific knowledge bases and ontologies), which indicate the rela-

tionships between an input set of entities. [Wang et al., 2010] addressed

the problem of mining advisor-advisee relationships from academic collabo-

ration/publication networks.

[Sundaresan and Yi, 2000] studied patterns of occurrences of related

phrases in Web documents, and addressed the problem of identifying re-

lations (such as book-author or acronym-expansion) between them. [Hattori

et al., 2008] proposed that property inheritance from a concept to its hy-

ponyms can be used for identifying hyponymy relationships on the Web.

In the life sciences domain, [Chang et al., 2009] addressed the problem of

mining relationships among genes, diseases and drugs related to G-protein-

coupled receptors. [Lange et al., 2005] proposed a data structure called Data

Linkage Graphs for capturing relationships between entities such as enzymes,

pathways, proteins and diseases. [Rinaldi et al., 2006] also address the prob-

lem of mining domain-specific relationships such as protein-protein interac-
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tions and gene interactions latent within annotated document corpora.

Another topic relevant to our work is that of statistical relational learn-

ing [Getoor and Taskar, 2007]. This area of work deals with probabilistically

modeling domains which have rich relational structures as well as inherent

uncertainties. Tasks such as the collective classification of entities given their

relationships with other entities, link prediction between related entities, and

entity resolution for identifying equivalent entities are addressed in this body

of work. In contrast to the above works, we speculate that there exist a spe-

cific kind of semantic associations called object-attribute relationships among

a given set of concepts.

In the next chapter, we describe the philosophy behind using co-occurrence

analysis for mining semantic associations from information spaces.



3
Co-occurrence based Semantics Mining

Philosophical foundations for understanding the semantics latent within ordi-

nary language were first explored in a school of philosophy known as Analytic

Philosophy [Preston, 2007]. Several schools of thought emerged from Analytic

Philosophy. Of these, Ordinary Language Philosophy (OLP) [Wittgenstein,

1953] is particularly relevant to our work.

42
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3.1 Ordinary Language Philosophy and Co-

occurrence

The key idea behind OLP is: meaning is usage. Early ideas of Analytic

Philosophy were based on the argument that terms in ordinary language

have pre-determined commonsense interpretations that are well-understood,

without reference to their usage contexts [Russell and Slater, 1986]. OLP

is in contrast to this, arguing that the commonsense meaning acquired by a

term is dependent on its usage context. Sometimes, polysemy resolution or

word sense disambiguation happens by way of the term acquiring its meaning

through its usage context. However, the argument of OLP goes beyond es-

tablishing word sense. Even seemingly “meaningless” terms acquire meaning

depending on the way they are used within a context. This is demonstrated

by the way the term “jabberwock” acquires a meaning in the following pas-

sage:

I love to go around the city in my jabberwock. My jabberwock has a seating

capacity of five, and runs on diesel. It has a mileage of 15 kilometers per

liter. It comes with cruise control too.

Here, we can see that the term “jabberwock” acquires the commonsense

meaning, namely car (vehicle). It acquires this meaning because of its us-

age with the other terms within the passage: seating capacity, diesel, mileage,

cruise control, etc. In other words, the meaning acquired by the term “jabber-

wock” is dependent on its co-occurrence with other terms within the cognitive

context. In this sense, co-occurrence analysis can be seen as a manifestation
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of the principles of OLP.

However, OLP does not entirely reject the commonsense meanings that

are attached to some terms without reference to their usage context. In the

above example, the meaning of the term “car” is still well-understood com-

monsensically. However, the association of “jabberwock” with this meaning

of “car” is dependent on the way “jabberwock” is used in the passage.

3.2 Hebbian Learning and Co-occurrence

Co-occurrence analysis of concepts in an information space also represents a

fundamental theory in Cognitive Science, which describes one of the ways in

which the human brain perceives associations between concepts. This is the

theory of Hebbian Learning [Hebb, 1949]. The Hebbian Theory states that

neural cells that are activated simultaneously tend to get connected to each

other.

The Hebbian Learning principle captures the co-occurrence of concepts,

as they are perceived by the brain over a large number of “episodes”, and

forms associations between them [Lamberts and Goldstone, 2005]. Here,

by an “episode”, we mean a short duration of time during which the brain

perceives one or more concepts simultaneously. An episode may be thought

of as a cognitive context.

For instance, when the term Hiroshima is uttered, we immediately tend

to recall the term Nagasaki or the term nuclear bomb. This association

was formed as a result of observing these concepts together over a large

number of episodes. In other words, the co-occurrences of these concepts in
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a large number of cognitive contexts caused them to be associated with one

another. Much of the work on mining word associations and verifying the

distributional hypothesis1 is based on the Hebbian Theory (e.g., [McDonald

and Ramscar, 2001; Terra and Clarke, 2003]).

This leads to the interpretation that co-occurrence analysis mimics one

of the fundamental ways by which human cognition works [Foundalis, 2006].

At this point, it may be recalled that we had earlier argued that semantics

come to be embedded in information spaces due to cognitive activities of

human actors. This is the reason for our choice of co-occurrence analysis as

the methodology for mining semantics from information spaces.

3.3 Beyond OLP and Hebbian Theory

In this thesis, we assert that co-occurrence analysis goes beyond establishing

just the meaning acquired by a term within its occurrence context. Co-

occurrence analysis also models the type of meaning acquired by a concept in

relation to other concepts in its occurrence context. That is, co-occurrence

analysis also models the labels of semantic associations existing between con-

cepts, which define the world-view of the population in that space.

For instance, the synonymy relationship between two concepts – e.g.,

feature film and movie – may be modeled using a hypothesis based on their

co-occurrence patterns as follows: if the concepts feature film and movie are

synonyms, then (i) feature film and movie are used to replace each other

within a context – i.e. there is a very low probability that the concepts

1The Distributional Hypothesis states that words that occur together within the same
contexts tend to have similar meanings.
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feature film and movie co-occur within a context, and (ii) the contexts in

which the concept feature film occurs are similar to the contexts in which

the concept movie occurs – i.e. terms that feature film co-occurs with are

similar to the terms that film co-occurs with.2 Thus, due to its co-occurrence

patterns, the concept movie not only acquires a commonsense meaning (due

to its usage within certain contexts), but also acquires a semantic label (in

this case, synonymy) for its meaning in relation to the concept feature film.

Therefore, in order to address the problem of mining semantics in terms

of world-views of the population in information spaces, we use co-occurrence

analysis. We have tested this assertion in terms of: (i) differentiating be-

tween “endorsed” (or relevant) and non-endorsed outgoing citations from

documents in repository spaces, and (ii) identifying semantic attributes of

concepts in social spaces.

This concludes the first part of this thesis, in which we have positioned

co-occurrence analysis as the methodology of choice for extracting the global

world-views of a population in an information space. In the next part, we turn

our attention to the task of mining semantics from repository spaces using

co-occurrence analysis. In particular, we focus on drawing interpretations

about the co-occurrences of links/citations, and how these interpretations

can be used to distinguish between the outgoing links/citations from a given

document. This is explained in the next chapter.

2This hypothesis can be extended further with the assertion that the attributes of the
concepts feature film and movie are similar. In this thesis, we address the detection of
such attributes using co-occurrence based hypotheses.



4
Co-citation Analysis in Repositories

Citation analysis has been a crucial element of library and information sci-

ences, which studies implicit semantics within clusters of documents, authors

and journals. A citation from a document A to another document B can be

seen as an endorsement of B by A [Chakrabarti, 2003; Garfield, 1971; Park

and Thelwall, 2003; White and McCain, 1989].

Co-citation – i.e. the co-occurrence of citations within a document – has

been used as a measure of topical relatedness among articles and authors in

47
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scientific literature [Small, 1973, 1993; White and McCain, 1989]. Quoting

[Budd, 1999], “If the citing author is asserting a knowledge claim in citing

specific texts, then there is something that inheres in those cited texts that

influences the citing author.” The co-citation of two documents by an au-

thor can thus be seen as those two documents “co-influencing” the author.

Therefore, according to the theory of Hebbian Learning, we argue that if

two documents are co-cited a large number of times (i.e. they “co-influence”

a large number of citing authors), then there is some kind of relatedness

between their topics, which causes them to be cited simultaneously and in-

dependently several times.

While the above notion of topical relatedness can be used to explain co-

citations based on Hebbian Theory, we provide additional interpretations

about the nature of co-citations.

4.1 Interpretations of Co-citations

Since citations in scientific literature are temporal in nature, there are no

reciprocal citations. Also, the outgoing citations of a scholarly paper cannot

change once it is published. However, on the Web, a page may not only

change its existing outgoing citations, but may also become aware of one or

more of its incoming citations, and thus add reciprocal outgoing citations.

On wikis, changes in citation structure are even more likely since pages can

be edited by any user. These differences in the underlying citation processes

reflect on the respective co-citation structures.

In order to understand the nature of co-citations better, we propose dif-
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ferent interpretations of what a co-citation means. We have developed three

interpretations of a co-citation based on different assumptions about how

it could have been formed. These are explained in Sections 4.1.1, 4.1.2

and 4.1.3.

4.1.1 Endorsements of Citations

Consider two documents A and B that are co-cited by a third document

C. Initially, there existed a citation from A to B that was very relevant.

An actor first discovered page A, and then discovered page B through the

citation from A to B. The actor then created page C citing both A and

B. In the context of the Web, this is known as the copying model [Kumar

et al., 2000]. In other words, C discovered A, and then “copied” its citation

to B. The copying model was proposed as a generative model to explain the

growth of the Web.

However, we interpret the above co-citation of A and B by C as follows:

C was able to discover B due to the citation from A to B; in this sense, the

co-citation by C can be seen as an endorsement of the citation from A to B.

This is illustrated in Figure 4.1. Similarly, if a large number of users followed

this citation, and ended up creating their own documents on a similar topic

and citing both A and B, then we could view the endorsement of the citation

as a global world-view of the population.

Such a global world-view can be used to distinguish “important” citations

from the rest. Suppose A contained citations to a number of documents, but

among those, if B alone has been highly co-cited with A, we can conclude
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Figure 4.1: The process of a co-citation endorsing a citation

that the citation from A to B is more “important” than the rest of the

citations by A [Mutalikdesai and Srinivasa, 2010].

In 1973, [Small, 1973] showed that, in scientific literature on Particle

Physics, two articles that are highly co-cited are also directly connected
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through a citation with high probability. A similar behavior is also known

to have been observed in the case of web pages – two pages that are highly

co-cited are also directly connected through a citation with high probabil-

ity [Reddy et al., 2006]. However, on Wikipedia, the modal citation path

length has been observed to be 2, given a pair of highly co-cited pages – i.e.

the highly co-cited pages were not directly linked to one another; instead,

with high probability, they were linked via an intermediary page [Reddy

et al., 2006].

The above interpretation of co-citations, therefore, seems to be relevant

to repository spaces such as the Web and digital libraries, and less so to

social spaces such as Wikipedia. Since wiki pages are editable by anyone,

it is more likely that the linkage structure keeps undergoing changes until

a common information architecture emerges that is acceptable to most of

the users involved. In web pages and scientific literature, however, citation

happens independently – a citation created by one user cannot be edited by

another. This enables us to view co-citations as citation endorsements in

repositories and not in social spaces. We address this interpretation in detail

in the rest of this chapter.

4.1.2 Knowledge Aggregation

Consider two documents A and B that are co-cited by a third document

C. Documents A and B contain topically relevant content, irrespective of

whether they cite each other or not. An actor discovered these documents,

and created C, which cited both A and B. In other words, C acts as an
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aggregator of the knowledge contained in A and B. In this sense, the co-

citation of A and B by C can be seen as a knowledge aggregation activity by

C. We can think of the co-citing document as representing a more general

topic of A and B (e.g., survey papers, hub pages, directories). Figure 4.2

shows a co-citation interpreted as a knowledge aggregation activity.

Figure 4.2: A co-citation as a knowledge aggregation activity

As discussed above, the co-citing document C can be seen to be on an

aggregated topic (of A and B). As such, in the above example, if document

A were to further co-cite two or more other documents, then the resulting

“aggregation hierarchy” can be seen to represent a topic hierarchy.

Here, we assume that documents cite each other due to topical relevance.
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However, this need not always be the case. In a repository space such as the

Web, this interpretation of a co-citation pertains to the local world-view of

a single actor.1 In order to address this problem, the following heuristic can

be employed: A document Y can be considered to be an aggregator of the

topics of a set of documents X, if the documents in X have been co-cited by

a large number of other documents as well. A large number of documents

independently co-citing the documents in X can be interpreted as being the

global world-view that the documents in X are related to one another.

Given such an aggregation hierarchy, if each individual document in this

hierarchy can be labeled with a topic, then topic classification can be seen as

one of the applications of co-citations as knowledge aggregation activities in

repository spaces. However, we do not address this problem as part of this

thesis, and view it as a potential line of future work.

4.1.3 Conditional Relevance

Consider two documents A and B. Suppose A is relevant to a topic t, while

the topic of B is unknown. Now, if a document C cites A, we assume that C

is also relevant to the topic t. In addition to this, if C cites B as well, then

we interpret this co-citation of A and B by C as follows: The world-view of

C is that B is also relevant to the topic t. If A, B and C were documents in

a repository space, then this interpretation would be the local world-view of

an actor in the cognitive context defining C.2 Nonetheless, a global world-

1However, in the case of a social space like Wikipedia, this interpretation reflects the
aggregated world-view of multiple actors, contained within a single SCP. This is because,
in a wiki, several users collaboratively edit a page to form co-citations.

2However, in a social space like Wikipedia, this interpretation would be the aggregated
world-view of multiple actors within an SCP.
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view does emerge from this interpretation in repository spaces, which can be

described as follows.

A number of documents cite A, and among them, a few also cite B. The

proportion of documents citing A, which also cite B, can be viewed as an

indicator of the relevance of B to A. In other words, if we know that A

is relevant to some topic t that defines the set of documents citing A, the

co-citations can be seen as representing the conditional probability of topical

relevance: Given that A is relevant to t, what is the probability that B is

relevant to t as well? Figure 4.3 illustrates this interpretation. In other

words, this interpretation gives us the global world-view of the “usability” of

B as a reference, in a context that uses A as a reference.3

Figure 4.3: Co-citations as indicators of conditional relevance. The relevance
of B to A can be given by |X∩Y ||X| .

In conjunction with the copying model [Kumar et al., 2000], the condi-

3In the next part of this thesis, we use this notion of “usability” or conditional relevance
for modeling co-occurrences of concepts in a social space too.
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tional relevance interpretation could also be used to predict the appearance

of a citation between two documents in the future in a repository space. In

literature, this is also known as the link prediction problem (c.f. [Al Hasan

et al., 2006; Liben-Nowell and Kleinberg, 2007; Lü and Zhou, 2011; Sarkar

et al., 2012; Song et al., 2009; Soundarajan and Hopcroft, 2012; Wang et al.,

2011]). Let us assume that a document A cites another document B. Sup-

pose CA is the set of documents citing A. Let CAB ⊆ CA be the set of

documents that cite B given that they also cite A. Now, the probability PCB

that a document C ∈ CA “copies” A’s citation to B, and itself ends up citing

B, is given by PCB = |CAB|
|CA|

.4 However, we do not go into the details of this

problem as part of this thesis, and view it as a part of future work.

In this work, we focus primarily on the first interpretation, co-citations

as citation endorsements, which serves as the global world-view of the popu-

lation about the distinction of certain citations from the rest in a repository

space. We formalize the notion of citation endorsement as the probabil-

ity with which any given citation from a given document points to another

topically relevant document. Such a measure could be used to differentiate

between citations from a document, based on their topical relevance to the

document. It can hence be used for guiding surfers or crawlers seeking to

maintain topical focus.

In Section 4.2, we describe a mathematical model for endorsed citations,

and discuss our experiments on analyzing endorsed citations in a Web crawl

as well as CiteSeer (a digital library).

4It may be noted that, in general, a given document C may copy the link to B from
one of the various documents it cites – represented by the set A – such that every A ∈ A
cites B.
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4.2 Co-citations as Citation Endorsements

Given a document C, we shall use the term CO to refer to the set of all

documents cited by C such that C /∈ CO. The citation set of C, denoted as CI

, is the set of all documents that cite C. In other words, CI = {D|C ∈ DO}.

Given any set of documents S = {C1, C2, . . . , Cn}, the co-citation set is

defined as:

CoCit(S) =
⋂
k

CI
k (4.1)

In this work, we shall be primarily concerned with co-citation patterns

across pairs of documents. For notational simplicity, for any pair of docu-

ments {A,B}, we denote A · B = CoCit({A,B}) = AI ∩ BI . We shall use

the notation A⇒ B to denote a citation from A to B.

Given any pair of documents {A,B} such that B ∈ AO, the endorsement

probability of the citation, denoted by ρ(A⇒ B), is computed as:

ρ(A⇒ B) =
|A ·B|∑

∀X∈AO

|A ·X|
(4.2)

Consider Figure 4.4 depicting a fragment of a citation graph. Document

A cites four documents, viz. B, C, D and E. Table 4.1 lists co-citation sets

for A with each of its out-neighbors5 along with the corresponding citation-

endorsement probabilities.

In our example above, we have not thresholded the co-citations. Co-cited

pairs of pages on the Web are known to exhibit a power-law distribution in

5The out-neighbors of a document A are defined as the documents cited by A.
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Figure 4.4: Sample citation graph

Document Pair Co-citation Set ρ(A⇒ out-neighbor)

{A,B} {P,Q} 0.3333

{A,C} {P, Q, R} 0.5

{A,D} {Q} 0.1667

{A,E} ∅ 0

Table 4.1: Co-citations of document A with its out-neighbors and the corre-
sponding citation-endorsement probabilities

the number of co-citing pages [Reddy et al., 2006]. We observe a power-

law distribution in the number of co-citation counts6 in the CiteSeer dataset

as well. Based on these distributions, we threshold the co-citations to in-

clude only those pairs of documents whose co-citation count equals at least a

specified value. This way, we can be reasonably sure that two documents are

genuinely relevant to one another, as they have been co-cited by a non-trivial

number of other documents.

An alternative perspective for citation endorsements is as follows. Assume

6For a given pair of documents, the co-citation count is defined as the number of
documents co-citing them.
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a category of users who browse a scientific literature corpus for researching a

given topic and end up creating a document of their own on that topic. The

importance such users assign to other documents is based on the relevance

of those documents to the topic of their interest. Given that one such user

has cited a given document A, the endorsement probabilities of the citations

from A can be seen as a relative measure of the tendency with which the

user would cite any of A’s out-neighbors as well.

In the context of the Web copying model (c.f. [Kumar et al., 2000]), this

can be seen as the probability of a citation being “copied” by a topically

focused user. On a similar note, the citation-endorsement probabilities can

be seen as the propensity that a topically focused crawler would index an

outgoing citation relative to the other outgoing citations from its current

document.

4.2.1 Endorsed Citation Graph

Given a citation graph G = (V,E), where V is the set of documents and

E ⊆ {(u, v)|(u, v ∈ V ) ∧ (u 6= v)} is the set of citations between documents,

we can construct its Endorsed Citation Graph (ECG) as G′ = (V,E ′, ρ),

where E ′ ⊆ E is the set of ordered pairs of documents such that (A,B) ∈ E ′

iff B ∈ AO and |A · B| ≥ δ, where δ is a thresholding parameter defining a

lower limit on the number of co-citations. The edges in E ′ are referred to as

endorsed citations.

Here, ρ : E ′ → [0, 1] is a weight assigned to every (A,B) ∈ E ′ indicating

the endorsement probability ρ(A⇒ B) defined earlier in Equation 4.2.
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The ECG provides us with a topical “backbone” inside the citation graph

of a scientific literature corpus. Along similar lines, we can define the ECG

for a Web crawl.

Handling Nepotistic Citation Endorsements in the Web

Arguably, a major source of co-citations in web pages are navigational hy-

perlinks, which are likely to be present across most of the pages within a

website. In order to prevent this from affecting our interpretation, we first

remove from consideration all nepotistic citations – i.e. citations originat-

ing within the same website – when counting co-citations for a given pair of

pages.

In our analysis of the ECG for a Web crawl, we consider a citation between

two pages belonging to the same parent host as non-nepotistic if they belong

to different sub-domains. In other words, we treat ab.xyz.com and uv.xyz.com

as two autonomous websites. Even though these websites are affiliated to the

same parent domain, viz. xyz.com, we assume that they represent two self-

contained sub-organizations. We assume that any citation from one of these

websites to the other is not nepotistic. Likewise, a citation between two

pages belonging to ab.xyz.com and xyz.com respectively is assumed to be

non-nepotistic. While we realize that it is possible for a nepotistic citation

to exist between two pages belonging to different websites, we do not concern

ourselves with the problem of multi-host nepotism (c.f. [Chakrabarti, 2003]).

In some cases, navigational hyperlinks between websites need not neces-

sarily have been created due to the “top-down” imposition of an information

architecture. They may have independently evolved over time, in which case



CHAPTER 4. CO-CITATION ANALYSIS IN REPOSITORIES 60

the interpretation of co-citations as citation endorsements could still provide

insights into the emergent information architecture of the Web.

It may be noted that, while there may also be several motivations other

than navigation for the creation of citations between pages (c.f. [Thelwall,

2004]), those interpretations of the underlying citation do not affect our in-

terpretation of a co-citation as a citation endorsement. Thus, for a given web

page A, if hname(A) is defined as its URL hostname, then:

AI = {C|((A ∈ CO) ∧ (hname(C) 6= hname(A)))} (4.3)

Note that if a co-citation A · B is under consideration, it could well be

the case that A and B belong to the same website. However, this co-cited

pair is considered non-trivial if A and B have a non-trivial number of co-

citations coming from other websites (to which neither A nor B belong).

Along similar lines, it can be argued that, in the case of digital libraries of

scientific literature, we must not consider co-citations emanating from “self-

citations” – i.e. citations between articles written by the same author(s) –

while building the ECG. However, in our analysis of the ECG for CiteSeer,

we assume that a citation from one article to another is based on merit, even

if the two articles have common authors, since most scholarly articles are

deemed to have undergone peer-review.

4.2.2 Experimental Analyses

We now describe the experimental analyses we performed over: (i) the ECG

for a large Web crawl, and (ii) the ECG for CiteSeer.
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Web Crawl Dataset We have performed our experiments on a Web crawl

obtained from Ask.com7 in January 2006.8 It contains 10, 623, 000 pages and

85, 812, 128 citations in all. We removed all isolated pages from the crawl

(i.e. pages having no incoming citations or outgoing citations). We also re-

moved all self-citations (i.e. citations connecting a page back to itself). We

were thus left with 8, 430, 736 pages and 84, 460, 523 citations. The inde-

gree and outdegree distributions for this cleansed dataset follow a power-law

with exponents of 1.88 and 3.42 respectively. We also observe that the ini-

tial segment of our outdegree distribution deviates from the power-law, thus

suggesting that pages with a low outdegree might follow a different (Poisson-

like) distribution. These observations are, in essence, consistent with those

of [Broder et al., 2000].

CiteSeer Dataset We downloaded a snapshot of CiteSeer in February

2009.9 It contains 716, 772 articles and 1, 744, 619 citations in all. These

articles belong to the broad area of Computer and Information Sciences.

Some of the citations were found to be pointing to other articles that were

not included in the dataset. Hence, we removed such citations in order

to obtain a self-contained snapshot of the CiteSeer citation graph, which

contained 1, 740, 331 citations. The indegree and outdegree distributions

for this cleansed dataset follow a power-law with exponents of 3.07 and 4.2

7http://www.ask.com/
8Thanks to Tao Yang and Ambuj K. Singh of UC Santa Barbara for providing this

Web crawl.
9CiteSeer.IST scientific literature digital library (open archives initiative): The dublin

core standard with additional metadata fields, including citation relationships (References
and IsReferencedBy), author affiliations, and author addresses. http://cs1.ist.psu.

edu/public/oai/oai_citeseer.tar.gz. Last accessed 6 February 2009.

http://www.ask.com/
http://cs1.ist.psu.edu/public/oai/oai_citeseer.tar.gz
http://cs1.ist.psu.edu/public/oai/oai_citeseer.tar.gz
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respectively. It has previously been observed by [Redner, 1998] and [Bilke

and Peterson, 2001] that citations follow a power-law indegree distribution

in Physics literature as well. However, we observe that the initial segments

of both, the indegree distribution and the outdegree distribution of CiteSeer

differ significantly from the power-law, suggesting that articles with a low

indegree/outdegree exhibit a different distribution.

We conducted all the experiments described in this chapter on a computer

having a 4-core Intel Xeon processor with IA-64 architecture, 6 GB of RAM

and a 200 GB hard disk drive. The algorithms for discovering ECGs and

computing ERanks (explained later on in this chapter) were implemented in

Java, with MySQL as the database for storing our datasets.

Analysis of the Web Crawl ECG

We found that 911, 411 citations – i.e. 1.08% of all the citations in the Web

crawl – have been endorsed by at least one non-nepotistic co-citation. As

mentioned earlier, we define a citation as being nepotistic if its source page

and target page have the same hostname. We also found that the number of

pages upon which these endorsed citations are incident is 97, 790 – i.e. 1.16%

of the total number of pages in the crawl.

The non-nepotistic co-citations that endorse citations on the Web exhibit

a power-law in the number of co-citation counts, as shown in Figure 4.5, with

an exponent of 1.69. In this thesis, we use Pareto cumulative distributions

(c.f. [Adamic; Adamic and Huberman, 2002]) to depict power-law distribu-

tions. This allows us to easily fit a linear regression to the distribution. The

Pareto cumulative distribution is a power-law with an exponent of α − 1,
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where α is the power-law exponent of the original probability distribution.

Based on the distribution in Figure 4.5, we choose a co-citation count

threshold of 10 for the Web crawl, since a very small number of citations

have been endorsed by 10 or more non-nepotistic co-citations. This indicates

that these citations might genuinely connect topically relevant pages.

Figure 4.5: Pareto cumulative distribution (log-scale) of co-citation counts
for endorsed citations in the Web crawl

We notice that only 97, 858 citations in the Web crawl have been endorsed

by 10 or more non-nepotistic co-citations. This forms only 10.74% of all the

non-nepotistically endorsed citations and only 0.12% of the total number of

citations in the crawl. These citations, along with the pages on which they

are incident, form our ECG. The number of pages in this ECG is 11, 180.
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The endorsed citation data forms a very small percentage of the overall

Web crawl. We believe that this is all the more reason to study semantics

inherent in endorsed citations. Although citation endorsements may not af-

fect crawling and ranking for generic searches in repository spaces such as

the Web, they are much more relevant to topic-sensitive crawls and searches.

Given that citation endorsements are rare on the Web, metrics based on cita-

tion endorsements can be seen as fine-tuning measures for relevance ranking.

In the Web crawl, we measured the proportion of outgoing citations from a

given page that are endorsed. Even though the modal percentage of endorsed

outgoing citations from the pages in our Web crawl ECG is 100, we found

that, with a probability of 0.727, the pages have at most 60% of their outgoing

citations endorsed. This statistic could be crucial to topical surfers, as a large

majority of pages in the Web crawl have only a few outgoing citations that

are deemed topically relevant to them.

The indegree and outdegree distributions for the ECG are shown in Fig-

ures 4.6 and 4.7 respectively. We see that the indegree distribution follows

a power-law with an exponent of 2.6, but has an initial segment deviating

from the power-law.

The outdegree distribution, on the other hand, seems to follow a Pois-

son distribution, and is therefore significantly different from the outdegree

distribution for the Web in general.

As a result of the long-tailed indegree distribution, there are a large num-

ber of pages with only a few endorsed incoming citations, while there are

only a few pages with a large number of endorsed incoming citations. The

latter can be seen as topically authoritative pages to which several pages
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Figure 4.6: Pareto cumulative distribution (log-scale) of indegrees for the
Web crawl ECG

have endorsed citations.

In the ECG, the number of pages with a non-zero indegree is compara-

ble to the number of pages with a non-zero outdegree (85.02% and 95.55%

respectively). However, while the maximum indegree here is 511, the max-

imum outdegree is only 68. This implies that even the best topical hubs in

the ECG do not point to a very large number of pages. However, the top

authorities are “recommended” very highly with large numbers of endorsed

citations to them.

The ECG is a disconnected graph with 1, 474 components. The distribu-

tion of component sizes is shown in Figure 4.8. With an exponent of 2.5,
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Figure 4.7: Pareto cumulative distribution (log-scale) of outdegrees for the
Web crawl ECG

component sizes in the Web crawl ECG seem to follow a power-law – i.e. a

small number of components contain a large number of pages, while a large

number of components contain only a small number of pages.

We also observed that, in 649 of the 1, 474 components (i.e. in 44.03% of

the components) of the Web crawl ECG, pages belong to multiple websites.

We found that 30, 137 (i.e. 30.8%) of the citations in the ECG connect

pages across different websites. This indicates that the notion of citation

endorsement allows us to identify citations from a page, which point to other

topically relevant pages, irrespective of the affiliations of the source and target

pages of the citations.
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Figure 4.8: Pareto cumulative distribution (log-scale) of component sizes in
the Web crawl ECG

Analysis of the CiteSeer ECG

In the CiteSeer dataset, 394, 747 citations – i.e. 22.68% of all the citations

in the dataset – have been endorsed by at least one co-citation. The number

of articles upon which these endorsed citations are incident is 134, 104 – i.e.

18.71% of the total number of articles in the dataset.

The co-citations that endorse citations in CiteSeer also exhibit a power-

law in the number of co-citation counts, as shown in Figure 4.9, with an

exponent of 3.53; the initial segment of this distribution deviates from the

power-law.

Based on the distribution in Figure 4.9, we choose a co-citation count
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threshold of 5 for the CiteSeer snapshot, since a very small number of cita-

tions have been endorsed by 5 or more co-citations. This indicates that these

citations might genuinely connect topically relevant documents.

Figure 4.9: Pareto cumulative distribution (log-scale) of co-citation counts
for endorsed citations in the CiteSeer snapshot

In CiteSeer, only 79, 248 citations have been endorsed by 5 or more co-

citations. This forms 20.08% of all the endorsed citations and only 4.55% of

the total number of citations in the dataset. These citations, along with the

articles on which they are incident, form our ECG. The number of articles

in this ECG is 36, 936.

As in the case of the Web crawl, in CiteSeer too, the endorsed citation

data forms a very small percentage of the overall dataset. Hence, for the same
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reasons discussed in the case of the Web crawl ECG, we believe that this is

all the more reason to study semantics inherent in endorsed citations in the

CiteSeer ECG. While the modal percentage of endorsed outgoing citations

from the articles in the CiteSeer ECG is 50, with a probability of 0.745, the

articles have 60% or fewer of their outgoing citations endorsed.

The indegree and outdegree distributions for this ECG are shown in Fig-

ures 4.10 and 4.11 respectively. Akin to the Web crawl ECG, the indegree

distribution for the CiteSeer ECG too follows a power-law with a deviating

initial segment, with an exponent of 3.3. However, unlike the Web crawl

ECG, the outdegrees of the CiteSeer ECG seem to follow a power-law with

an exponent of 5.49, albeit with an initial segment that deviates from the

power-law towards a Poisson-like distribution.

Similar to the Web crawl ECG, in the CiteSeer ECG too, there are a large

number of documents with only a few incoming endorsed citations, while

there are only a few documents with a large number of incoming endorsed

citations. The latter can be seen as topically authoritative documents to

which several documents have endorsed citations.

In the CiteSeer ECG, the number of articles with a non-zero indegree is

significantly smaller than the number of articles with a non-zero outdegree

(58.49% and 81.68% respectively). However, while the maximum indegree

here is 220, the maximum outdegree is only 40. Here too, the best topical

hubs in the ECG do not point to a very large number of documents, but

the top authorities are “recommended” very highly with large numbers of

endorsed citations to them.

The CiteSeer ECG is a disconnected graph. Component sizes in the
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Figure 4.10: Pareto cumulative distribution (log-scale) of indegrees for the
CiteSeer ECG

CiteSeer ECG, however, exhibit a significantly different behavior compared

to the Web crawl ECG. Here, one of the components dominates over all the

other components with 29, 964 articles and 72, 653 citations – i.e. 81.12% of

the articles and 91.68% of the citations in the CiteSeer ECG. The distribution

of the ECG component sizes is shown in Figure 4.12.

Since the ECG components are formed entirely out of endorsed citations,

we look at them as being topical in nature – i.e. every document in a given

component belongs to the same broad topic. This would explain the distri-

bution of component sizes in the CiteSeer ECG. The ECG is made up largely

of a single component because all the articles in it belong to the same topic.



CHAPTER 4. CO-CITATION ANALYSIS IN REPOSITORIES 71

Figure 4.11: Pareto cumulative distribution (log-scale) of outdegrees for the
CiteSeer ECG

This is by extension of the fact that the entire CiteSeer snapshot itself is on

a single broad topic, viz. Computer and Information Sciences. This is in

contrast to the Web crawl, which is made up of several heterogeneous topics.

It may be noted that a given topic could be distributed across two or

more components in the ECG. The following are some of the most frequent

terms across the titles of all the articles in the dominant component of the

CiteSeer ECG: system, network, data, analysis, distributed, algorithm, logic,

model, learning, performance. This list of terms is indicative of the topic of

this component.
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Figure 4.12: Pareto cumulative distribution (log-scale) of component sizes in
the CiteSeer ECG

Structural Motifs

We now briefly examine some of the interesting structural motifs that are

prevalent in both our ECGs. These are illustrated in Figure 4.13.

Figure 4.13: Some interesting structural motifs in the ECGs

Endorsed Citation Paths A commonly occurring structural motif in both
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the ECGs is the endorsed citation path. This is a sequence of docu-

ments such that each intermediate document contains an outgoing en-

dorsed citation to its successor document and an incoming endorsed

citation from its predecessor document. The intermediate documents

are deemed to have a common context with their predecessor as well

as successor, thus allowing a topical transition from their predecessor

to their successor.

Hubs/Authorities and Spokes We see several structures wherein a cen-

tral “authoritative” document contains incoming endorsed citations

from numerous spoke documents, which in turn do not often contain en-

dorsed citations to one another. Here, the central document establishes

a common context where the topics of the various spokes converge. In

some cases, a central hub document contains outgoing endorsed cita-

tions to several other documents. The hub establishes a common point

of departure for the topics of all the spokes. In a few cases, a single

page acts as the hub as well as the authority around a set of spoke

pages.

Dense Clusters We observed several subgraphs that had a dense struc-

ture. Many of these subgraphs were strongly connected, and sometimes

cliques as well. Such a densely connected subgraph indicates that each

document has found a common topical context with all or most of the

other documents in that subgraph. Therefore, a single, strong topical

context encompassing all or most of the documents is very likely to

emerge in a dense ECG cluster.
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One of the more curious patterns in our Web crawl ECG is two or more

dense clusters being connected to one another through a “bridge page”. Fig-

ure 4.14 shows an actual ECG component with instances of this pattern.

A manual inspection of the pages of this component reveals that they

contain news articles on various aspects of Sports in the online newspaper

Cincinnati Enquirer10 over various months of the year 2004. Even though the

component as a whole has the same theme (i.e. Sports), we see that there are

several densely connected clusters making up this component. The way the

clusters are chained in an almost linear fashion depicts the temporal nature

of the topic.

We can see 11 different clusters in this component. We manually labeled

these clusters as:

1. General Sports news for 30 March 2004

2. General sports news for 06 April 2004

3. News on the Cincinnati Reds baseball team for 06 April 2004

4. General Sports news for 26 April 2004

5. News on the Cincinnati Reds baseball team for 25 July 2004

6. General Sports news for 04 August 2004

7. General Sports news for 06 August 2004

8. General Sports news for 08 August 2004

10http://www.enquirer.com

http://www.enquirer.com
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Figure 4.14: A component of the Web crawl ECG showing bridging of dif-
ferent dense clusters
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9. General Sports news for 25 August 2004

10. General Sports news for 29 August 2004

11. General Sports news for 08 September 2004

The bridge pages establish a common ground for two or more clusters in

such components. In our example above, the bridge connecting the various

clusters for July and August 2004 is the page on the 2004 Summer Olympics

Schedule. Since the Summer Olympics were held from 13 August 2004 to 29

August 2004, there have been several news articles on it before and during the

event, and these articles have linked to the games’ schedule page. Thus, the

common ground across all these news articles is established by the games’

schedule page. This page is an example of a topically authoritative page

aggregating the contexts of various clusters.

In this section, we have presented the notion of endorsed citations, and our

experimental analyses of endorsed citations in a Web crawl and in CiteSeer.

In Section 4.3, we describe a topical document ranking scheme, which uses

endorsed citations.

4.3 Document Ranking using Endorsed Cita-

tions

As discussed in Section 4.2, the endorsement probabilities (ρ) of the outgoing

citations from a given page can be viewed as a measure of the topical relevance

of the corresponding out-neighbors to that page. Based on this idea, we

propose a mechanism called ERank to rank documents within an ECG.
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PageRank [Page et al., 1999] and Online Page Importance Computation

(OPIC) [Abiteboul et al., 2003] consider a random surfer model, where the

surfer, at each page, chooses any one of the outgoing citations on that page

with a uniform probability. In our model, we consider a topically biased

surfer, who, at each page, chooses an outgoing citation with a non-uniform

probability – namely the endorsement probability (ρ) of the citation. How-

ever, the notion of PageRank cannot be directly applied to the ECG. The

ECG is not only a set of disconnected components, but also any given compo-

nent of the ECG is not guaranteed to be irreducible and aperiodic – necessary

factors for the PageRank model.

In order to rank documents within an ECG component, we start by as-

suming that a topical surfer enters the component on any one of its pages

with equal probability.11 The surfer then crawls the component based on

the endorsement probabilities of citations. The ERank of a page is then the

probability that the topical surfer visits the page given that she has entered

the component.

4.3.1 Formalization of ERank

We can formalize ERank as:

pi+1 = LTpi (4.4)

Here, pi is the vector of ERank scores at iteration i, while L is a M ×M
11Strictly speaking, the surfer need not start with pages within the ECG with equal

probability. Pages in the ECG may be found non-uniformly through keyword-based search.
However, we ignore this in order to understand topical surfing using ERank.
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matrix (M is the number of pages within the component for which ERank

is being computed) such that

L[u, v] =


ρ(u⇒ v) if (u, v) ∈ E ′

0 otherwise

(4.5)

It may be noted that the ERank vector is computed for each component

separately, and not for the ECG as a whole. At the beginning of the ERank

computation, each p0[i] is initialized to 1
m

, where m is the number of nodes

in the ECG component for which ERank is being computed.

We now take a brief detour and explain an iterative algorithm called

Online Page Importance Computation (OPIC) [Abiteboul et al., 2003]. We

use an OPIC-like model for implementing ERank. In the OPIC model, there

are two vectors known as cash and history. The components of these vectors

correspond to the pages on the Web. The cash of a node/page indicates the

“votes” it has accumulated from its in-neighbors12 in the previous iteration.

To start with, each node is given the same amount of cash (typically 1
n
,

where n is the number of nodes). Then, each node is picked infinitely often,

whereupon it adds its current cash contents to its history, distributes all its

cash among its out-neighbors uniformly, and resets its cash to 0. The history

of a node, at the end of the computation, indicates the amount of cash that

has flowed through it. This represents the “visit rate” or reachability of the

node in a random walk. For practical purposes, the computation is stopped

when the history vector reaches a steady-state distribution. The flow of cash

12The in-neighbors of a node A are the nodes that cite A.
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in the OPIC model can be likened to the random surfer in PageRank. In

fact, it is shown that the history vector of OPIC, like the PageRank vector,

converges to the principal eigenvector of the Web graph. In order to make the

Web graph irreducible and aperiodic, the OPIC model introduces a virtual

node in the graph, to which all nodes have a link, and which in turn links to

all nodes.

Due to its ease of implementation, we consider an OPIC-like cash-flow

model for ERank. We assign an initial cash value to each of the nodes

(i.e. pages) in an ECG component. The nodes are then randomly chosen

infinitely often, and their cash contents are distributed among their out-

neighbors based on the endorsement probabilities. This process is continued

till the ranking of pages within the component based on the history of cash-

flow becomes stable.

In addition to cash-flow based on endorsement probabilities, the other

difference between ERank and OPIC is that the ERank model is allowed

to “leak” cash out of the system. In other words, we do not use OPIC’s

virtual node in ERank. Since the surfer is assumed to be a random surfer in

OPIC, she is allowed to resume surfing from any page uniformly at random,

once she encounters a page with no outgoing citations. In our case, however,

we discard all the cash from nodes having zero outgoing citations, in effect

allowing cash to leak out of the system. This is because a given component is

not guaranteed to be strongly connected. This is also significant because the

surfer in ERank is a topically-biased surfer unlike the random surfer in OPIC.

The resultant distribution of ERank, therefore, need not correspond to the

principal eigenvector of the component. However, it corresponds to some
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stationary distribution, such that the ERank of a document corresponds

to the topic-sensitive reachability of the document from anywhere in the

component.

Topic-sensitive PageRank by [Haveliwala, 2003] also computes document

importance values based on topicality. However, it relies heavily on topic

taxonomies like the Open Directory Project (ODP).13 In our approach, we

use endorsed citations to build topical backbones of the Web, thus elimi-

nating the need to use topic taxonomies. Also, Topic-sensitive PageRank

uses uniform probabilities for following outgoing citations from a given doc-

ument. [Kleinberg, 1999] and [Lempel and Moran, 2001] also address topic-

sensitivity. However, they too do not distinguish between outgoing citations.

We hypothesize that not all outgoing citations are equally relevant to

the surfer, and that co-citations are a good measure for distinguishing their

relevance. We have described above the idea of ERank as applied to the Web

crawl ECG. However, this idea can be applied in the context of the ECG for

any repository space, in general.

4.3.2 Experimental Analysis

A pertinent idea now is to contrast ERanks within an ECG component to

the corresponding PageRanks. In order to accomplish this, we first needed to

compute the PageRanks of the documents in our Web crawl as well as Cite-

Seer. Since computing PageRank using power iterations is highly resource-

intensive, we estimated the PageRanks of documents as described by [For-

tunato et al., 2007]. Across the entire citation graph, for each degree class

13http://www.dmoz.org/

http://www.dmoz.org/
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c ∼= (cin, cout),
14 where cin and cout are specific indegree and outdegree re-

spectively, we computed the average PageRank of pages belonging to c as:

PR(c) =
d

N
+

1− d
N

cin
avg(Nin)

(4.6)

Here, d is the damping factor, set to 0.15 as with [Page et al., 1999]. N is

the total number of documents in the dataset, while avg(Nin) is the average

indegree over all the documents in the dataset. For the Web crawl, we have

N = 8, 430, 736 and avg(Nin) = 10.0182. For the CiteSeer snapshot, we have

N = 716, 772 and avg(Nin) = 2.428.

It may be noted that PageRank can be computed using Equation 4.6

only in graphs with no degree correlation. [Nikoloski et al., 2005] confirm

that scale-free graphs do not generate degree correlation. Hence, the above

methodology for computing PageRank can be employed on both our datasets.

[Fortunato et al., 2007] offer evidence that, even for graphs with weak degree

correlations, the average PageRank of documents as shown in Equation 4.6

accurately mirrors the actual PageRank as computed traditionally (c.f. [Page

et al., 1999]). They also show that the fluctuation between the average

degree-class PageRank and the actual PageRank decreases as the indegree

increases.

For our experiments, we needed the PageRanks of the documents in both

our ECGs. The pages in the Web crawl ECG had a minimum non-zero

indegree of 10 in the overall Web crawl, while the documents in the CiteSeer

ECG had a minimum non-zero indegree of 5 in the overall CiteSeer snapshot.

14Here, the degree class c, which is a tuple (cin, cout), represents a class of documents
having identical behavior in terms of indegrees and outdegrees in the citation graph.
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We argue that the documents in both these ECGs had a “high” indegree in

their respective overall citation graphs because: (i) both graphs are scale-

free with only a small number of documents having a high indegree, and

(ii) the number of documents having an indegree of at least 10 in the Web

crawl, as well as the number of documents having an indegree of at least 5

in the CiteSeer snapshot, are both small (11.37% and 10.81% respectively).

Therefore, the average PageRanks as computed through Equation 4.6 are

reasonably accurate.

For each of our ECGs, for each component, we computed the ranking

correlation between ERank and PageRank using the Kendall τ coefficient15

with adjustments for ties [Abdi, 2007]. In 790 of the 1, 474 components of

the Web crawl ECG, all values of either ERank or PageRank (or both) were

equal, and hence the τ coefficient could not be computed for them accounting

for values tied at the same ranks. This was true of just 70 components in

the CiteSeer ECG. For the remaining components, we observed that the

τ coefficients varied widely from −1 (i.e. complete disagreement between

ERank and PageRank orderings) to +1 (i.e. complete agreement between

ERank and PageRank orderings) in both the ECGs. We note that 40.94% of

the components have a τ coefficient of at most +0.4 in the Web crawl ECG,

while 28.79% of the components have a τ coefficient of at most +0.4 in the

CiteSeer ECG. This indicates that a significant proportion of components

show either a “low” or a negative correlation between ERank and PageRank

in both the ECGs.

15Kendalls rank correlation. http://www.statsdirect.com/help/nonparametric_

methods/kend.htm. Last accessed 23 May 2012.

http://www.statsdirect.com/help/nonparametric_methods/kend.htm
http://www.statsdirect.com/help/nonparametric_methods/kend.htm
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In a separate experiment, for a few components of the Web crawl ECG,

we also obtained an approximation of the PageRanks through the Google

toolbar,16 and computed the τ correlation coefficients between these PageR-

anks and the corresponding ERanks. Here too, the τ coefficients varied

significantly (from −0.154 to +0.6486).

The above experiments show that there is no consistent correlation be-

tween ERank and PageRank in either the Web crawl or CiteSeer. Our study

suggests that ERank may sometimes offer a different ordering based on top-

icality, compared to PageRank. This implies that ERank may be able to

add distinct value to the user’s browsing experience in terms of relevance.

Hence, it is worthwhile to explore further the notion of endorsed citations

for focused resource discovery and fine-tuned relevance ranking in repository

spaces.

This concludes the second part of this thesis, where we have discussed

semantics mining from citations in repositories. In the third part, we look

at detecting semantic attributes of concepts in social spaces, as described in

the next chapter.

16http://toolbar.google.com

http://toolbar.google.com


5
Attribute Detection in Social Spaces

A concept in a social space is an abstract representation of an idea or an

experience. A concept could mean a topic, theme or simply a named entity.

A concept may encapsulate a set A of other concepts as “attributes”. A

set of concepts A is called the set of attributes of a concept C (denoted by

attrs(C)) if: (i) every concept A ∈ A describes one or more properties of

84
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C, and (ii) the concepts in A collectively describe C uniquely.1 In this part

of the thesis, we refer to a concept that is uniquely described by a set of

attributes as the object of those attributes. The set of attributes of an object

collectively lends a commonsense meaning to that object.

Given an attribute A ∈ attrs(C), the property of C that A describes

could be in the form of a semantic association between A and C. Also, since

a set of concepts A is defined as an attribute-set based on its collective ability

to describe another concept, it is difficult to tell whether a given concept A

is an attribute of another concept C if it is presented in isolation. Such a

concept A could have a well-defined semantic association with C, but its

ability to collectively, along with other concepts, uniquely describe C would

not be clear.

For instance, given the object term India, we seek to mine concepts such

as New Delhi, Subcontinent, Mahatma Gandhi, Himalayas, Ganga, etc. In

this example, each of the attributes has a semantic association with India:

(i) New Delhi is the capital of (or is contained in) India, (ii) Subcon-

tinent is a super-class of India, (iii) Mahatma Gandhi is the father

of the nation of India, (iv) Himalayas is a geographical feature of

India, (v) Ganga is a river of India. Collectively, they help in uniquely

describing the concept India, and therefore constitute its attribute set. How-

ever, if we consider the concept Mahatma Gandhi in isolation, we cannot

be sure if it is describing India, as it is also associated with several other

concepts such as Satyagraha, South Africa, etc.

1Since attributes uniquely define concepts, for any two concepts C1 and C2, C1 6= C2 ⇒
attrs(C1) 6= attrs(C2).
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Also, not all topically relevant terms of an object are attributes of that

object. For instance, the synonyms of a term provide alternatives to us-

ing that term (e.g., decoration, adornment, embellishment, etc.). However,

they do not describe the concept represented by that term. Similarly, the

semantic siblings of an object (c.f. [Brunzel, 2008; Brunzel and Spiliopoulou,

2007; Rachakonda et al., 2012]) do not help in uniquely describing that ob-

ject. They represent other concepts that are semantically “equivalent” to the

object (e.g., Rahul Dravid, Sachin Tendulkar, Sourav Ganguly, etc.). Now,

since not all topically relevant terms of an object are the attributes of that

object, we assert that the task of identifying object-attribute relationships is

not the same as the task of topic modeling for the object (c.f. [Anthes, 2010;

Blei and Lafferty, 2007; Blei et al., 2003; Hofmann, 1999a]).

We address the problem of detecting the attributes of a given object as

held by the global world-view of a population. We propose two co-occurrence

based hypotheses for detecting such object-attribute relationships in social

spaces. We have tested our hypotheses with Wikipedia as the underlying

social space.

Dataset For our experiments, we used the December 2006 dump of the

English Wikipedia. We treated each section within a Wikipedia article as an

occurrence context (or a socio-cognitive context) within which concepts co-

occur. We considered only non-stub articles that contain at least one section

with at least two terms in it. We treat terms within the article-sections as

concepts in this social space. Given an article-section, we consider as “terms”

those phrases that form the titles of the target articles of hyperlinks within
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that article-section. In all, we considered 3, 217, 187 Wikipedia articles. The

dataset contained 9, 145, 712 article-sections (i.e. socio-cognitive occurrence

contexts) and 5, 687, 833 terms (i.e. concepts).

We conducted all the experiments described in this chapter on a computer

having a 4-core Intel Xeon processor with IA-64 architecture, 6 GB of RAM

and a 200 GB hard disk drive. We implemented our algorithms in Perl, with

MySQL as the database for storing our dataset.

We now discuss the modeling of co-occurrence patterns of concepts in a

social space, which will enable us to formulate our hypotheses for attribute

detection.

5.1 Co-occurrence based Attribute Detection

Let D be the set of documents (resulting from SCPs) in the social space,

while T is the set of all terms in the social space. An occurrence context c is

characterized by a set of terms c ∈ 2T . The terms in an occurrence context are

said to have co-occurred within that context. Patterns of such co-occurrences

form the basis of object-attribute semantics and other semantic associations.

The set of all occurrence contexts of a document d ∈ D is denoted by Cd.

The set of all occurrence contexts across the entire social space is denoted by

CD. The set of all occurrence contexts containing a given term t is denoted

as Ct. Based on the above notions, we now describe a set of primitives by

which we can make inferences about observed patterns of object-attribute

relationships across documents.

Given a term t, its support is defined as the ratio of the number of contexts
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it appears in, to the total number of contexts. This is given by

sup(t) =
|Ct|
|CD|

(5.1)

Terms are not uniformly used along with one another. Some terms tend

to be used together much more than some other terms within an occurrence

context. Usability is a measure of the probability of a term being used in the

context of some other term. The usability of a term v in the context of a

term u is given by

ρ(v|u) =
|Cu ∩ Cv|
|Cu|

(5.2)

When a set of terms is to be considered, we also use two other primi-

tives using which two canonical forms of their combined semantics can be

expressed: closure and focus. Given a set of terms σ, their closure is the

set of all occurrence contexts containing at least one of the terms in σ, and

their focus is the set of all occurrence contexts containing all the terms in σ.

Closure is denoted by σ∗, and focus is denoted by σ⊥.

σ∗ =
⋃
u∈σ

Cu (5.3)

σ⊥ =
⋂
u∈σ

Cu (5.4)

5.1.1 Modeling Co-occurrence Patterns of Concepts

The social space corpus is visualized as an occurrence graph, which is a bipar-

tite graph mapping terms to their occurrence contexts. From the occurrence
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graph, different higher forms of graphs are generated. These are the co-

occurrence graph and the usability graph. The bipartite occurrence graph,

denoted by O, captures the association between terms and their occurrence

contexts. Formally the occurrence graph is defined as:

O = ({T,C}, E) (5.5)

where the set of nodes is partitioned into T , the set of terms, and C, the set

of occurrence contexts. E ⊆ T × C is the set of associations between the

terms and the occurrence contexts.

Two terms t1 and t2 are said to have co-occurred if there exists at least one

occurrence context c that contains both t1 and t2. Thus, the entire corpus

can be represented as a co-occurrence graph. Edges between terms in this

graph represent the pair-wise co-occurrences across terms. The co-occurrence

graph is the basic data structure, on top of which we design hypotheses for

object-attribute relationships. Formally, the co-occurrence graph is defined

as:

GO = (T,E,w) (5.6)

where T is the set of all terms in the corpus, E is the set of all pair-wise

co-occurrences across terms, and the function w : E → N indicates the

co-occurrence count between pairs of terms. The function w is given by

w(t1, t2) = |Ct1 ∩ Ct2|.

Given a term t, its co-occurrence neighborhood, denoted by N(t), is the

set of all terms co-occurring with t. Formally, given a co-occurrence graph
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G as defined in Equation 5.6 above, and a term t ∈ T (G), we have

N(t) = {v | {t, v} ∈ E(G)} (5.7)

The neighborhood N(t) of a single vertex t can basically be visualized as

the set of vertices of the “star”-like subgraph originating from t.

Given a co-occurrence graph G = (V,E,w), the semantic context of a

term t, denoted by S(t) or by t(G), is the induced sub-graph of the vertices

of its neighborhood. An induced subgraph H of a graph G contains a subset

of vertices of G and all edges of the form {v1, v2} from G such that v1, v2 ∈

V (H). In other words

S(t) = t(G) = ({t} ∪N(t), Et, wt) (5.8)

where {v1, v2} ∈ Et ⇒ ((v1, v2 ∈ {t} ∪ N(t)) ∧ ({v1, v2} ∈ E)). Here,

wt : Et → N indicates the co-occurrence counts between terms (as defined

earlier).

A semantic context can also be obtained for a set of terms. Given a co-

occurrence graph G = (V,E,w), the semantic context of a set of terms Q is

defined as the induced subgraph of the vertices in
⋃
u∈Q

N(u). This is denoted

by S(Q).

The semantic context is an important primitive for mining latent seman-

tics. We claim that the attributes of an object t will be found within the

semantic context of t. It is not necessary to process the entire co-occurrence

graph for extracting object-attribute relationships pertinent to a given term.
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We conjecture that the same applies to the extraction of a large number of

other latent semantics.

We define a set of terms X to be coherent if

⋂
x∈X

N(x) 6= φ (5.9)

For the purpose of mining object-attribute relationships, a higher form

of graphs, known as the usability graph is generated by using the occurrence

graph and the co-occurrence graph. The usability graph of a given semantic

context S over a co-occurrence graph G is a directed graph, whose nodes

are terms from S, and directed edges represent the usability scores between

ordered pairs of terms within S. The usability graph for S is denoted by the

adjacency matrix US. This is discussed in detail further on in this chapter.

5.1.2 The Notion of Attribute Detection

If a set of concepts Q ⊆ N(x) are observed, they are said to be the attributes

of x if they collectively maximize the probability of guessing the object of

discussion to be x. Intuitively, this hypothesis can be explained using the

analogy of the popular parlor game called Twenty Questions. In this game,

the objective is to determine an object (i.e. a person, a place or a thing) by

asking at most twenty questions (about the attributes of the object), which

we think maximize our chances of guessing the object correctly. The idea

here is to optimally select the twenty attributes such that the probability of

determining (or the “determinability” of) the object is maximized.

The above hypothesis about attributes can be expressed in terms of the
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co-occurrence graph as follows: Given a term x, its attributes are elements

of the coherent set of terms Q, such that x has the highest usability score

with respect to Q. This can be formalized as:

Q = argA∈2N(x) max ρ(x|A) (5.10)

However, we have proved that finding the set Q of attributes of x, which

has the highest “determinability” for x (i.e. the highest usability of x with

respect to Q), is an NP-hard problem. Please refer Appendix A for details of

this proof. Since the determinability hypothesis is NP-Hard, we propose two

other hypotheses for attribute detection in social spaces. The first such hy-

pothesis is called the Usability Hypothesis, which is described in Section 5.2.

5.2 The Usability Hypothesis

Given a coherent set of terms Q in a corpus represented as a co-occurrence

graph G, a term u ∈ V (S(Q)) is an attribute of a term v ∈ V (S(Q)) if

u ∈ N(v) and v has a higher usability score than u in an infinitely long

random walk executed on S(Q). The notion of usability – i.e. ρ(y|x) –

represents what might be termed the probability of “using” y in a context

mentioning x. The pairwise usability scores ρQ(y|x) between any pair of

nodes (x, y) in S(Q) are computed using the closure of Q as the underlying

corpus:

ρQ(y|x) =
|Q∗ ∩ Cx ∩ Cy|
|Q∗ ∩ Cx|

(5.11)
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In other words, ρQ(y|x) is the probability that an actor (or content cre-

ator) uses y “through” x in an overall context pertaining to Q.

For example, ρBarack Obama(Tenure of Office|US President) is the prob-

ability of using the term Tenure of office in a context mentioning US Pres-

ident, among the set of all contexts pertaining to Barack Obama. In this

sense, S(Q) can be visualized as a usability graph – denoted by its adjacency

matrix US(Q) – in the overall context of Q, where the weight of a directed

edge from a node u to another node v is given by ρQ(v|u).

The Usability Hypothesis may be stated as follows: In the context of

a set of terms Q, the usability of an object is more than the usability of its

attributes. Further, it is more likely that the attribute is used in an occurrence

context that mentions the object, rather than vice-versa.

For instance, consider the set of all contexts relating to “Barack Obama”.

Consider “Tenure of Office” to be an attribute of “US President”. According

to the Usability Hypothesis, if an actor were to be randomly creating con-

texts mentioning “Barack Obama”, she would be more likely to use the term

“Tenure of Office” after using the term “US President”. This is because the

term “US President” – and not “Tenure of Office” – has a higher usability

in the context of the term “Barack Obama”. Further, it is more likely that

the actor uses “Tenure of Office” in an arbitrary context mentioning “US

President” rather than using “US President” in an arbitrary context men-

tioning “Tenure of Office”. Since there are different ways by which one can

use either of these terms, the overall usability of a term in the neighborhood

is calculated by a fixed point computation over a random walk. We call this

process UseRank.
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5.2.1 Usability Ranking

If V (S(Q)) is represented by the vector pQ and if US(Q) is the corresponding

adjacency matrix of the usability graph defined over S(Q), where US(Q)[u, v] =

ρQ(v|u), the UseRank of nodes can be formalized as follows:

pQ = UT
S(Q) pQ (5.12)

The UseRank vector pQ converges to some fixpoint of UT
S(Q).

In terms of its functioning, UseRank can be likened to cash-flow based

ranking models such as Online Page Importance Computation (OPIC) [Abite-

boul et al., 2003]. Initially, each node in S(Q) is given an equal amount of

cash. Each node also maintains a history of the cash that has flowed through

it over various iterations. Each node is picked infinitely often to perform

the following action: the node updates its history with its current cash con-

tents (i.e. history(u)+ = cash(u)), and distributes its current cash among

its outneighbors proportionate to their usability probabilities w.r.t. itself.

Note that instead of being conserved, cash is synthesized during this process.

This is because the UseRank of a node is a measure of its “usability” rather

than its “visitability”. At the end of this iterative history updating and cash

distribution process, the history values of the nodes represent the usability

of their corresponding topics.2

A measure of “topical impact” is also introduced into UseRank compu-

tations where each node in S(Q) updates its history proportionate to its

2Another difference between OPIC and UseRank is that the underlying graph in OPIC
may have some nodes with zero outlinks, whereas the usability graph defined over S(Q)
has no such nodes. The usability graph defined over S(Q) is a strongly connected graph,
meaning that every node has at least one child-node to transfer its cash to.
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impact in the context of the topic of Q. In other words, history(u)+ =

TopicalImpactQ(u)× cash(u).

We define the topical impact of a node as:

TopicalImpactQ(u) =
|Q∗ ∩ Cu|
|Q∗|

(5.13)

The topical impact of a term u in the context of a set of terms Q can

also be seen as the usability of u in the context of Q. The higher the topical

impact of u, the more it is deemed to be relevant in the topic of Q. The

notion of topical impacts thus allows for the updating of the history of a

node proportional to its relevance in the context of the query terms.

Incorporating topical impacts into the UseRank model, Equation 5.12

becomes

pQ = UT
S(Q) EQ pQ (5.14)

where EQ is a diagonal matrix such that EQ[u, u] = TopicalImpactQ(u)

In this variant, the UseRank vector pQ converges to some fixpoint of

UT
S(Q) EQ.

5.2.2 Object-Attribute Trees

The UseRank scores, as computed above, are used for identifying object-

attribute relationships. Using the object-attribute relationships discovered

in S(Q), we envisage a hierarchical structure of object-attribute relationships

known as a Object-Attribute Tree (OAT). In an OAT on the topic represented

by Q, an attribute concept can further have attributes and so on. For exam-



CHAPTER 5. ATTRIBUTE DETECTION IN SOCIAL SPACES 96

ple, in the context of the topic of “Barack Obama”: (i) Barack Obama has

an attribute called US President, (ii) US President has an attribute called

Tenure of Office, and so on. Figure 5.1 shows an example OAT.

Figure 5.1: A hypothetical OAT in the semantic context of Barack Obama

In order to facilitate the building of such an OAT for S(Q), we hypothesize

that a node u is an attribute (or child) of a node v if the following conditions

are true.

• u ∈ N(v). The idea here is that the attributes of an object co-occur

with that object.

• UseRank(v) ≥ UseRank(u) following the usability hypothesis

• Among all the neighbors of u in S(Q), v has the highest UseRank. We

impose this condition for simplicity – in order to avoid having multiple

parents for a given concept in the OAT.

• u is not an ancestor of v already.3 This is because an OAT should not

have cycles.

3It is plausible that v has already been assigned as an attribute to u – if u, v, and all
the neighbors of v have the same UseRank.
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Assigning parents to nodes in an OAT according to the above conditions,

we find at least one node to which a parent cannot be assigned. If there is

only one such node without a parent, we designate it as the root concept

node and return the OAT rooted at this node. However, if there are multiple

such root candidates, two strategies can be followed.

1. Designate each one of those root candidates as root concepts, and re-

turn the respective trees rooted at those nodes. In this case, we will

have a forest of OATs rather than a single OAT.

2. Break the tie by picking the root candidate with the highest UseRank.

If multiple root candidates qualify, pick one uniformly at random. We

used this strategy in our experimental evaluations.

5.2.3 Experimental Analysis

We implemented UseRank with TopicalImpact on the Wikipedia dataset de-

scribed earlier in Chapter 5. Given a term x input by the user, the set Q∗,

where Q = {x}, was constructed as the set of article-sections containing at

least 7 occurrences of x. The reason for this is as follows. On the aver-

age, an article-section contains only 2.28 named entities occurring 7 or more

times. We speculate that these “small” number of entities may be the cen-

tral concepts of these article-sections. Hence, we assume that Q∗ is the set

of article-sections where the query entity is a central concept. This is done

in order to avoid topical contamination of S(Q) due to “topic drift”.

For practical purposes, S(Q) was constructed using only the 10 most

frequently occurring entities for each article-section in Q∗. We then ran our
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algorithm over S(Q) for 25 iterations.

For a given query, we computed the OAT and listed the top-10 attributes

of the root concept (i.e. the top-10 children of the root concept ordered

by UseRank scores). If more than one concept qualified for being the root

concept, we chose the one with the highest UseRank score. If more than one

root concept had the highest UseRank score, we broke the tie by picking a

root concept randomly.

We issued 30 queries chosen by 10 volunteers, and for each of these queries,

we presented the root concept and its top-10 attributes to the volunteers. We

asked the volunteers to evaluate each query on the following criteria.

1. Is the root concept relevant to the query? This is an essential criterion

for evaluation, since the attributes of any entity within the OAT are

said to hold within the overall context of the root concept. The root

concept is computed in an emergent fashion in this approach.

2. Is the root concept appropriate to the query, or is it too general or too

specific? Sometimes, the root concept computed by our algorithm may

establish an overall context that may be too general or too specific in re-

sponse to a query. For example, in response to the query “Himalayas”,

picking “Tibet” as the root concept may be seen as being too specific,

since “Tibet” is not sufficient to establish an overall context within

which to describe the “Himalayas”. We asked the volunteers to assign

points to the root concept ranging between −5 and +5, where a nega-

tive score indicates generality and a positive score indicates specificity

(e.g., −5 stands for “extremely general” and +5 stands for “extremely
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specific”). A score of 0 indicates that the root concept is the same as

the query.

3. Of the 10 attributes shown for this root concept, how many do you agree

with? In other words, we asked the volunteers to identify a subset of

these 10 attributes, which they think help in uniquely describing the

root concept. Using this information, we measured the precision of the

computed attribute set for a given root concept, for a given volunteer.

The trial queries used in our experiments are shown in Table 5.1.

The following are two samples of the top-10 attribute sets generated by

the Usability Ranking approach for the root concepts of given queries.

Root concept infosys: The top-10 attributes are murti, pune, bangalore,

india, n. s. raghavan, mysore, share, technology, city-tv and infosys

bpo limited.

Root concept google: The top-10 attributes are map, page, yahoo!, states,

gmail, app, android, web search engine, china and news.

Relevance of the Root Concept to the Query

For 29 of the 30 trial queries, all 10 volunteers agreed that the root concept

was relevant to the query. For the remaining query, 9 volunteers agreed

that the root concept was relevant to the query, while the tenth volunteer

disagreed. This shows that the root concept computed by the UseRank

algorithm is relevant to the given query in most cases.
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Sl. No. Query Sl. No. Query

1 himalayas (tibet) 2 infosys

3 bangalore 4 mohandas karamchand gandhi

5 mayawati 6 red fort

7 taj mahal (mahal) 8 jawaharlal nehru

9 lalu prasad yadav (yadav) 10 bay of bengal

11 mahendra singh dhoni 12 nepal

13 facebook 14 google

15 latin america (america) 16 michael jackson (jackson)

17 mysore 18 karnataka

19 mount everest 20 biryani

21 turing machine 22 digital camera

23 japanese cuisine 24 siberian tiger

25 african elephant 26 demographics (trip distribution)

27 christopher nolan 28 motherboard

29 manmohan singh 30 popeye (fleischer)

Table 5.1: List of queries used for evaluation of the usability ranking ap-
proach. Queries 1, 7, 9, 15, 16, 26 and 30 had root concepts different from
the query. The root concepts of these queries have been mentioned in paren-
theses.

Generality/Specificity of the Root Concept

For each query, say q, we computed the average generality/specificity, aq,

over all 10 volunteers. Figure 5.2 shows the frequency distribution of the aq

scores (rounded off to the nearest integer) for our trial queries. The aq scores

range from −3.7 to +3.8, with 23 of the 30 root concepts having an aq score

of 0.
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Figure 5.2: UseRank: Frequency distribution of the aq scores (rounded off to
the nearest integer) for the 30 trial queries

We then computed a consolidated score of generality/specificity, g, as

the average of the aq scores over all 30 queries. We found that g = −0.05,

thus indicating that the root concept computed by the UseRank algorithm

is neither too general nor too specific in most cases.

Precision of Attributes for the Root Concept

For each root concept, say q, we computed the precision of attributes for

each volunteer, and then averaged the precision over all 10 volunteers. These

average scores, pq, ranged from a minimum of 0.42 to a maximum of 0.92.

Figure 5.3 shows a plot of the pq scores for each of the trial queries. We

observe that 13 of the 30 queries had a pq score of 0.7 or more. Figure 5.4

shows the frequency distribution of the pq scores (rounded off to one decimal

place) for our trial queries.

Over all 30 queries, the average of the pq scores was found to be 0.66

with a standard deviation of 0.12. These results show that the usability
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Figure 5.3: UseRank: pq scores for the root concepts for the 30 trial queries.
The X-axis represents the trial queries, and the Y-axis represents the pq
scores.

Figure 5.4: UseRank: Frequency distribution of the pq scores (rounded off to
one decimal place) for the 30 trial queries

ranking approach has the potential to address the problem of identifying

object-attribute relationships for building OATs.

In Section 5.3, we describe another hypothesis, which could be used



CHAPTER 5. ATTRIBUTE DETECTION IN SOCIAL SPACES 103

in augmentation with the usability ranking approach, for detecting object-

attribute relationships in social spaces.

5.3 The Positive Relevance Hypothesis

The next hypothesis that we propose for detecting object-attribute rela-

tionships is known as the Positive Conditional Relevance Hypothesis, based

on the probabilistic dependence between two terms. Given a co-occurrence

graph G, we define a term y to be an attribute of a term x if the usability of

y with respect to x is greater than the support of y.

Given two terms x and y, we say that their occurrences (or usages) are

independent of one another if ρ(y|x) = sup(y) (or alternatively, if ρ(x|y) =

sup(x)). In other words, if the probability of using y in a context containing

x, is the same as the probability of using y in any arbitrary context, then the

usages of x and y within the text corpus are said to be independent of one

another. However, x and y are probabilistically dependent if ρ(y|x) 6= sup(y).

If ρ(y|x) > sup(y), it is said that there is a positive relevance of y to x,

while ρ(y|x) < sup(y) indicates negative relevance of y to x [Falk and Bar-

Hillel, 1983]. The positive relevance of a term y to a term x indicates that

the usability of y is highly conditional to the usage of x. In this approach, we

simply consider the usability of y with respect to x – i.e. ρ(y|x) – for every

y ∈ N(x). Given this, the Positive Relevance Hypothesis may be stated

as follows: An actor (content creator) is more likely to use an attribute of x

while creating some contexts mentioning x, rather than using it independently

by itself.
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We hypothesize that the usage of the attribute of an object is highly

positively relevant to the usage of the object itself – i.e. ρ(y|x) > sup(y) if y

is an attribute of x. For instance, given that the term “Tenure of Office” is

an attribute of the term “US President”, according to the Positive Relevance

Hypothesis, an actor creating contexts mentioning “US President” is more

likely to use “Tenure of Office”, than an actor randomly creating a context.

5.3.1 Quantifying Positive Relevance

Given that x is the object for which attributes are to be detected, we compute

a Relevance Score, ry, for each y ∈ N(x), as ry = ρ(y|x) − sup(y). We

hypothesize that a term y is an attribute of x if ry > m, such that m ∈ [0, 1).

Here, m is a tunable parameter. The higher the value of ry, the higher the

“attributeness” of y to x.

For practical purposes, we do not hard-code the parameter m. Instead, we

list the terms in N(x) in the descending order of their ry scores, and present

the top-k such terms (along with their ry scores) as candidate attributes of

x to the social space analyst.

5.3.2 Experimental Analysis

We tested this approach too using the Wikipedia dataset described earlier.

For each of the 30 queries chosen by volunteers for our previous approach,

we obtained the top-10 attributes using the Positive Relevance approach.

The following are two samples of the top-10 attribute sets generated by

the Positive Relevance approach for given queries.
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Query bay of bengal: The top-10 attributes are india, river, sea, bangladesh,

bengal, big five personality traits, indian ocean, orissa, andhra pradesh

and burma.

Query mysore: The top-10 attributes are india, karnataka, bangalore, kan-

nada language, tippu sultan, wodeyar, empire, kingdom of mysore, acer

laboratories incorporated and mangalore.

A team of 10 volunteers was asked to evaluate each of our queries for the

precision of its attributes. In other words, we asked the volunteers to identify

a subset of these 10 attributes, which they think help in uniquely describing

the query concept. For each query, say q, we computed the precision of

attributes for each volunteer, and then averaged the precision over all 10

volunteers. These average scores, pq, ranged from a minimum of 0.39 to

a maximum of 0.87. Figure 5.5 shows a plot of the pq scores for each of

the trial queries, while Figure 5.6 shows the frequency distribution of the pq

scores (rounded off to one decimal place).

Over all 30 queries, the average of the pq scores was found to be 0.65

with a standard deviation of 0.13. These results show that, along with the

Usability Ranking approach, the Positive Relevance approach too could be

useful in building OATs.

5.4 Usability Ranking vs Positive Relevance

Figure 5.7 gives a comparative view of the pq scores for both our approaches,

for some of the trial queries. In the Usability Ranking approach, even though
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Figure 5.5: Positive Relevance: pq scores for the 30 trial queries. The X-axis
represents the trial queries, and the Y-axis represents the pq scores.

Figure 5.6: Positive Relevance: Frequency distribution of the pq scores
(rounded off to one decimal place) for the 30 trial queries

the attributes have been computed for the root concepts of the queries rather

than the queries themselves, the root concept is the same as the query for 23

of the 30 queries. We have chosen these 23 queries for this comparison.
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Figure 5.7: Consolidated view of the pq scores for 23 queries “common” to
the two proposed approaches. The X-axis represents the queries, and the
Y-axis represents the pq scores.

While the Usability Ranking approach outperforms the Positive Rele-

vance approach for 13 of these queries, the Positive Relevance approach

outperforms the Usability Ranking approach for the remaining 10 queries.

However, over these 23 queries, the average difference between the pq scores

of both these approaches is only 0.11. This difference in their performance

seems marginal. This indicates that both these approaches show promise in

addressing the problem of assigning object-attribute relationships in social

space datasets.

Moreover, the overlap between the top-10 attributes generated by the

two approaches seems to be low. For each of the 23 queries described above,

say q, we measured the Jaccard Coefficient of the attribute-sets of the two

approaches as J(q) = |attrsU (q)∩attrsP (q)|
|attrsU (q)∪attrsP (q)| , where attrsU(q) is the set of top-

10 attributes for q using the Usability Ranking approach, while attrsP (q)
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is the set of top-10 attributes for q using the Positive Relevance approach.

Figure 5.8 shows the Jaccard Coefficients computed as above for the various

queries.

Figure 5.8: Illustration of the similarity (in terms of the Jaccard Coefficient)
between the top-10 attributes generated by the two proposed approaches for
the “common” queries. The X-axis represents the queries, and the Y-axis
represents the Jaccard Coefficients.

These Jaccard Coefficients range from a minimum of 0 to a maximum

of 0.54, the average being 0.22, indicating that the attribute-sets generated

by the two approaches are largely independent of one another. Both our

approaches could be used in conjunction with each other for detecting a

wider range of attributes in social spaces.

Even though we have performed our experiments using Wikipedia as the

underlying social space, the techniques presented in this chapter are general

enough to be applicable to other forms of social spaces as well. In Wikipedia,

we consider an article-section as a cognitive context within which concepts
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co-occur, and an article as the socio-cognitive process (SCP). Likewise, if we

consider a social image sharing platform like Flickr4 as the underlying social

space, the cognitive contexts would be represented by the tag cloud, the de-

scription and each of the comments associated with an image, while the SCP

would be represented by the page containing the image along with its tags,

its description and comments of other users. The tags co-occurring in the

context of an image, the terms co-occurring in the context of the description,

and the terms co-occurring within each of the comments would constitute

the concepts of this space. Another example of a social space would be a

social content sharing platform like Facebook.5 Here, the cognitive contexts

would be represented by the post itself as well as each of the comments asso-

ciated with it, while the SCP would be collectively represented by the post

and its comments. The terms co-occurring within the post and the terms

co-occurring within each of the comments would constitute the concepts of

this space.

4http://www.flickr.com/
5http://www.facebook.com/

http://www.flickr.com/
http://www.facebook.com/


6
Concluding Remarks

The idea behind this thesis was to address the problem of extracting seman-

tics from online information spaces. However, information spaces around us

are not of a uniform nature. We therefore classified information spaces into

repository spaces and social spaces, based on the differences between them

in terms of the nature of cognitive processes governing content creation in

them, and the nature of social interactions between such cognitive processes.

The cognitive processes lead to local world-views that actors seem to possess

110



CHAPTER 6. CONCLUDING REMARKS 111

in these spaces. Further, we cast the problem of mining semantics in infor-

mation spaces as inferring the global world-view held by the population at

large.

In order to mine such semantics, we relied on analyzing the co-occurrence

patterns of concepts that are of interest. We have argued that co-occurrence

analysis is a manifestation of the principles of Ordinary Language Philosophy

(OLP) and Hebbian Theory. The idea behind OLP is that the meaning of a

term is defined by the way it is used along with other terms within a given

cognitive context. On the other hand, Hebbian Theory asserts that the hu-

man brain tends to form associations between concepts based on the way the

concepts co-occur across a large number of cognitive contexts. Corroborating

the principles of OLP, this suggests that the human brain tends to perceive

the meaning or identity of a concept based on the way it associates that

concept with other concepts. Given that semantics are global world-views of

a population, which come to be embedded in information spaces through the

cognitive activities of human actors, it can now be argued that co-occurrence

analysis, which emulates OLP and Hebbian Theory, is a suitable method-

ology for mining such semantics. We extend this argument and assert that

co-occurrence analysis not only allows us to identify the meaning of a concept

in a given context, but also allows us to identify the type of meaning (i.e.

the semantic association) it acquires in relation to other concepts within that

cognitive context.

We have studied the problem of mining the global world-view held by the

population in a repository space. In particular, the artifacts of interest to

us were the linkages between documents, which form the basis of the social



CHAPTER 6. CONCLUDING REMARKS 112

interaction between various cognitive processes within the space. Here, the

world-view of interest to us were citations that are deemed to be relevant to

a certain topic by the population in the repository space. In other words,

we looked to identify citations that were endorsed by co-citations. Our work

suggests that mining endorsed citations using the co-occurrences of citations

may help in fine-tuning existing methods for resource discovery and relevance

ranking in repository spaces.

We have also studied the problem of mining the global world-view held

by a population in a social space in terms of semantic associations between

concepts. The artifacts of interest to us were noun phrases within occur-

rence contexts in a social space. Here, the world-view of interest to us were

the semantic attributes of an object as held by the population in the social

space. We proposed two hypotheses for identifying the attributes of a given

concept, based on the co-occurrence patterns of concepts. The results of this

work suggest that co-occurrence analysis could be effective in addressing the

problem of mining semantic associations between concepts in a social space.

We now discuss some of the limitations of the work presented in this

thesis.

6.1 Limitations of our Work

It is pertinent to note that, in our analysis on repository spaces as well

as social spaces, we have modeled co-occurrence patterns between pairs of

artifacts, i.e. as binary relations. However, co-occurrence patterns can be

modeled as n-ary relations, in general. Suppose a document A has cited a
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set of documents B. Now, if we model the co-citation of {A} ∪ B as a set

by other documents, then we could explore the endorsement of the citation

from A to B collectively, instead of the endorsement of citations between just

pairs of documents. Here, the arity of the co-occurrence relation would be

|{A} ∪B|, instead of 2.

Similarly, in the case of modeling usability patterns of concepts in social

spaces also, the co-occurrences could be modeled as n-ary relations. This

might help in identifying the attributes of an object more accurately. How-

ever, for the sake of simplicity, we have modeled only pairs of co-occurrence

patterns in our work. This allows us to demonstrate the idea of mining se-

mantics using co-occurrence analysis in a simple fashion. We now discuss

some limitations of our approach pertaining to the specific problems we have

addressed in this thesis.

6.1.1 Citation Endorsement

We now describe some of the limitations of our work on endorsed citations

in repository spaces. Our idea of citation endorsement relies on the co-

citation of documents. This poses a disadvantage for documents that are

newly created in the dataset, since such documents are not likely to have

been co-cited with any other documents. Thus, endorsed citations cannot

be identified from new documents. A document will have to have accrued a

threshold number of co-citations, especially with the documents that it has

itself cited, before endorsed citations from it can be identified.

In methodological terms too, our approach has some limitations. For
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instance, we define a citation on the Web as nepotistic if its source and target

documents have the same hostname. This precludes the possibility that a

citation within the same hostname could actually be topically relevant. Also,

this does not guarantee that citations across hostnames are always genuine.

Such a decision could potentially impact the quality of endorsed citations on

the Web.

Moreover, in the case of the CiteSeer corpus, we do not address the prob-

lem of nepotistic citations at all. In reality, it is possible that a document is

cited for reasons other than topical merit. A simple heuristic that could be

employed in this case is to disallow citations between documents that have

common authors. However, it is possible that an author cites her own paper

in order to position the current work or to demonstrate incremental work.

Here too, such a citation could actually be topically relevant. The identifi-

cation of topically relevant citations with high precision and recall is crucial

for deriving latent semantics using co-citations in a repository space.

Also, we currently assume that the underlying dataset (i.e. the snapshot

of the repository space) is static. We have not addressed any measures in

this work for incremental handling of the growth of the repository space,

so that new endorsed citations can be identified, and current ones updated,

dynamically.

6.1.2 Attribute Detection

We now describe some of the limitations of our work on identifying object-

attribute relationships in social spaces. Our idea of object-attribute relation-
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ships relies on the co-occurrence patterns of concepts. In our work, we define

concepts as named entities extracted from the underlying Wikipedia corpus.

Given a Wikipedia article-section, we treat as named entities those phrases

that form the titles of the target articles of hyperlinks originating in that

article-section. However, it is possible that a Wikipedia article-section links

to a topically unrelated article for the purpose of elucidation or explanation.

This leads to the dilution of the semantic context of the topic and adds noise

to it. For instance, the Wikipedia page on Barack Obama1 links to articles

on J-1 Visa, Capital Punishment and Lame Ducks. While these links are

not directly relevant to the topic of Barack Obama, they have been used as

references to explain certain terms that occur on that Wikipedia page.

On the other hand, there could be certain other concepts on a given page,

which could actually be topically relevant, but do not have a Wikipedia hy-

perlink anchored around them. Due to our approach, we end up not consider-

ing them as named entities. The identification of topically relevant concepts

with high precision and recall is very crucial in building topically focused

semantic contexts for a given object. If the semantic context is noisy or does

not contain genuinely related concepts, the quality of attribute detection for

that object could be compromised.

As described in Chapter 5, we asked a group of volunteers to evaluate the

precision of our experiments on attribute detection. However, we have not

measured the recall of our approaches. A simple heuristic for measuring recall

is to ask the volunteer to enumerate what she thinks are the attributes of a

1http://en.wikipedia.org/wiki/Barack_Obama. Last accessed 17 February 2013.

http://en.wikipedia.org/wiki/Barack_Obama
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given object, and to compare this list with the result set of our experiments.2

Also, as with our work on repository spaces, here too our experiments

have been conducted on static snapshots of a social space. We have not

addressed any measures in this work for incremental handling of the growth

of the social space, so that new object-attribute relationships can be identified

dynamically.

6.2 Future Work

In conclusion, we discuss some directions for future work in the area of mining

semantics in information spaces, in addition to the directions presented by

the limitations of our work as described above.

6.2.1 Short-term Directions for Future Work

Distinctions between Repositories and Social Spaces In Chapter 1, we

have discussed the theoretical distinctions between repository spaces

and social spaces. However, we have not validated these differences

experimentally. In the near future, we intend to design appropriate

experiments to test the significance of these differences, as well as the

differences in the semantics yielded by repository spaces and social sp-

aces.

Applications of Topical Backbones for Specific Repositories In the

near future, we also intend to construct endorsed citation graphs for

2This heuristic assumes that the volunteer is sufficiently knowledgeable on the given
topic to be able to enumerate the object-attribute relationships.
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specific corpora such as Indian publications in Computer Science. One

of the applications envisaged for this is the development of appropriate

decision support systems for stakeholders such as funding bodies and

review boards related to specific academic domains. Another appli-

cation envisaged for topical backbones of specific repository spaces is

browser add-ons for surfing digital libraries using endorsed citations.

Interpretations of Co-citations In Chapter 4, we have introduced three

interpretations of co-citations in a repository space. However, we have

studied only one of these interpretations in detail in this thesis. In the

near future, we intend to explore the other two interpretations, knowl-

edge aggregation and conditional relevance, as well. We will look to use

these interpretations to study their applications in topic classification

and link prediction, respectively, in repository spaces.

Experiments with Various Datasets We have conducted our experime-

nts on repository spaces with CiteSeer and a Web crawl as the datasets.

As mentioned earlier, we intend to conduct similar experiments on other

corpora such as Indian publications in Computer Science, High Energy

Physics literature, etc. It would also help to try to construct topi-

cal backbones (ECGs) using our approach from a sufficiently “noisy”

dataset (i.e. comprised of various broad topics) such as arXiv.org.

This could give us an idea as to how the ECGs help in the distilla-

tion of topics. Further, assuming that topics are distilled into sets of

ECG components, it might be interesting to measure the focus of each

component (subtopic) of a set (topic) in terms of an aggregate mea-
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sure of the citation-endorsement probabilities of the citations within

that component. For our experiments with social spaces, we have used

Wikipedia as the dataset. However, it might be interesting to perform

the task of object-attribute detection in other social spaces such as

blogs and Facebook crawls too.

Attribute-Detection and Topic Modeling In Chapter 5, we argue that

the task of detecting object-attribute relationships is not the same as

the task of topic modeling. However, it would be useful to experimen-

tally compare our approaches with topic modelers such as LDA [Anthes,

2010; Blei and Lafferty, 2007; Blei et al., 2003; Hofmann, 1999a]. This

would give us an idea as to how our approaches fare differently from

topic modelers. It would also be useful to compare our approaches for

attribute detection with existing approaches for ontology learning and

relationship mining, which we have discussed in Chapter 2. The exist-

ing approaches for topic modeling, ontology learning and relationship

mining could be used as a baseline against which the proposed attribute

detection hypotheses could be validated.

6.2.2 Long-term Directions for Future Work

Analytical Querying The overarching goal of this work is an analytical

system, which can be used to conduct analytical queries about seman-

tics latent within information spaces. Such a system is envisaged to

have the following characteristics: (i) A logical data model for mod-

eling content and explaining latent semantics, and (ii) An expressive
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query model for being able to conduct queries over the latent semantics.

The work done in this thesis, along with the work done by [Mani, 2011;

Mutalikdesai and Srinivasa, 2006; Rachakonda et al., 2012], is a step

towards modeling latent semantics. In the future, we intend to explore

this problem further, and look to design appropriate data models and

query models based on co-occurrence patterns of concepts, for online

analytical processing over information spaces.

Cognitive Models for Latent Semantics In this thesis, we have mod-

eled information spaces as well as semantics from the perspective of hu-

man cognition. We have also positioned co-occurrence analysis as mim-

icking human cognition. However, this argument needs to be explored

further so that the ideas of semantics, cognition and co-occurrence an-

alysis can be seamlessly integrated into an analytical model. The work

done by [Rachakonda et al., 2012] is a step in this direction. They

propose a 3-layer analytical model based on the episodic as well as

the semantic natures of declarative human memory. In the future, we

intend to model the semantics extraction problems presented in this

thesis in terms of the 3-layer analytical model.

Complete Problem Domain of Semantics in Information Spaces In

Chapter 1, we have mapped out the problem domain for semantics ex-

traction in information spaces (see Table 1.1). In this thesis, we have

addressed only a subset of this problem domain. In the future, we would

like to address the following as well: (i) co-occurrence based semantics

extraction in repositories using concepts such as named entities and
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topics, and (ii) co-occurrence based semantics extraction in social spa-

ces using social interactions such as comments, “likes”, trust/distrust,

etc. One of our objectives is to adapt the semantics extraction algo-

rithms for the entire problem domain to the 3-layer analytical model

mentioned above.

Further Classification of Information Spaces In Chapter 1, we have

classified information spaces into two categories: repository spaces and

social spaces. However, the possibility of classifying repositories and

social spaces further into smaller subclasses needs to be investigated.

This might help in addressing the issue of semantics extraction from

information spaces in a more focused manner. Consider repository

spaces. Scientific literature and Web hypertext are two prominent

examples of repository spaces. However, there are subtle differences

between them. For example, in scientific literature, a paper typically

cannot change substantially once published – neither in terms of the

content, nor in terms of citations. On the other hand, web pages can

be modified to any extent, at any point of time. This also means that

citations in scientific literature cannot be cyclic, due to the temporal

nature of scientific literature corpora. Citations on the Web, however,

can be cyclic. Based on such differences, it might be possible to clas-

sify repository spaces further. Similarly, consider social spaces. A wiki

corpus incorporates interactions not only in the form of back-and-forth

exchange of ideas within a page, but also in the form of citations be-

tween pages. A social network such as Facebook, on the other hand,
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typically does not have inter-linkages between posts, and incorporates

social interactions using comment/votes only within the context of a

post. Based on such differences, it might be possible to classify social

spaces also further. However, formal definition and modeling of such

smaller subclasses is required in order to understand how semantics get

embedded differently in each of them.



A
NP-Hardness of Determinability

We prove that finding the set Q of attributes of x, which has the highest

“determinability” for x (i.e. the highest usability of x with respect to Q),

is NP-hard, meaning: neither can it be solved by a polynomial time al-

gorithm, nor can a claimed solution for it be verified by a polynomial time

algorithm [Cormen et al., 1990]. We first show that the determinability prob-

lem, labeled DETERMIN for short, is intractable by showing that every

problem in NP can be reduced to the determinability problem in polynomial

122
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time. We then show that DETERMIN /∈ NP.

A.1 Intractability of Determinability

We show that every problem in NP can be reduced to the determinabil-

ity problem by showing that the circuit-satisfiability problem can be re-

duced to it in polynomial time. We first consider an “easier” version of

the DETERMIN problem, labeled DETERMINk, where the objective is

to find the set Q of attributes of x such that ρ(x|Q) = k for some k ∈ [0, 1].

We show that DETERMINk is intractable by showing polynomial time re-

ducibility of the circuit satisfiability problem (labeled CIRCUIT SAT for

short) to DETERMINk. The CIRCUIT SAT problem is known to be

NP-complete [Cook, 1971].

Theorem 1. The DETERMINk problem is intractable.

Proof. In the CIRCUIT SAT problem, a given circuit consists of a set L of

n input lines. For some input sets Q ∈ 2L, the circuit produces an output

of 1, while for the other sets of inputs, it produces an output of 0. That is,

there exists a function f such that

f : 2L → {0, 1} (A.1)

We now map a given circuit in CIRCUIT SAT to a given entity x whose

set of attributes is to be identified in DETERMINk. For the given circuit,

we assume |L| = |N(x)|. Given an entity x, we bijectively map the set L

of input lines to N(x) using a function g – i.e. g : L → N(x) and g−1 :
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N(x) → L. Here, the function g has a time complexity of O(|L|) (as does

g−1). Similarly, we bijectively map the set of outputs {0, 1} to {¬k, k} using

a function h – i.e. h : {0, 1} → {¬k, k} and h−1 : {¬k, k} → {0, 1}. Here, h

and h−1 have a constant time complexity. Therefore, using the functions g

and h, the function f now be reduced, in polynomial time, to

f : 2N(x) → {¬k, k} (A.2)

The DETERMINk problem produces an output of k when the corre-

sponding problem of CIRCUIT SAT produces an output of 1 for a given

combination of inputs, while the DETERMINk problem produces an output

not equal to k when the corresponding CIRCUIT SAT problem produces

an output of 0 for a given combination of inputs.

This shows that the problem of finding a set Q of attributes of x, such

that the determinability of Q for x is some pre-defined value k, is intractable.

Hence, the problem of finding the set Q of attributes of x, such that Q has

the highest determinability for x, is also intractable.

A.2 Determinability is not in NP

Lemma 1. Given a set A with determinability k for a given entity x, the

determinability of supersets of A for x does not increase or decrease mono-

tonically.

Proof. The various combinations of entities from N(x) can be represented
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as a poset (2N(x) ⊆).1 The Hasse diagram for the poset (2N(x) ⊆) for an

example set N(x) = {a, b, c} is shown in Figure A.1.

Figure A.1: Illustration of the poset (2N(x) ⊆)

In Figure A.1, as we move upwards from the individual singleton sets

towards their supersets, we assert that the determinability of the supersets

for an entity x neither increases monotonically nor decreases monotonically.

This can be demonstrated using Figures A.2 and A.3 as follows.

Figure A.2: Illustration of increase in determinability in a superset of A

As defined earlier, given a set of entities A ⊆ N(x), the determinability

of A for x can be given by:

det(A, x) = ρ(x|A) =
|A⊥ ∩ Cx|
|A⊥|

(A.3)

1In fact, (2N(x) ⊆) is a lattice, since every pair of elements in 2N(x) can be shown to
have a supremum (least upper bound) and an infimum (greatest lower bound).
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Figure A.3: Illustration of decrease in determinability in a superset of B

where A⊥ represents the focus of A, i.e. the set of occurrence contexts in

which all the elements of A occur, while Cx represents the set of contexts in

which concept x occurs.

We prove the above lemma by considering the determinability of the set

A and the determinability of the set A ∪B, which is a superset of A.

Consider Figures A.2 and A.3. In these figures, consider set A. Let the

striped area of A, denoted by sA, represent A⊥∩Cx, while the area covered by

the set A as a whole represents A⊥. Now, the area covered by A is composed

of the striped area, sA, and the plain area, pA. Thus, Equation A.3 can be

re-written to characterize the determinability of A for x as:

det(A, x) =
sA

sA + pA
∼=
sA
pA

(A.4)

Now consider the superset A ∪ B. Here too, the striped area of A ∪ B,

denoted by sA∪B, represents (A ∪B)⊥∩Cx, while the area covered by the set

A∪B as a whole represents (A ∪B)⊥. The area covered by A∪B is composed

of the striped area, sA∪B, and the plain area, pA∪B. Thus, Equation A.3 can

be re-written to characterize the determinability of A ∪B for x as:

det((A ∪B), x) =
sA∪B

sA∪B + pA∪B
∼=
sA∪B
pA∪B

(A.5)
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In Figure A.2, we see that sA
pA

< sA∪B

pA∪B
. That is, the determinability of

a superset of A, for x, has increased. However, in Figure A.3, we see that

sA
pA

> sA∪B

pA∪B
. That is, the determinability of a superset of A, for x, has

decreased.

Therefore, the determinability of supersets of a given set, for a given

concept, does not increase or decrease monotonically.

Theorem 2. The DETERMIN problem is not in NP.

Proof. If the determinabilities of supersets of a given set, for a given con-

cept x, would increase monotonically, then given a set Q ∈ 2N(x) with de-

terminability k, it would have been possible to verify in polynomial time

whether Q has the highest determinability by checking whether Q = N(x).

On the other hand, if the determinabilities of supersets of the given set for

x would decrease monotonically, then it would have been possible to verify

in polynomial time whether Q has the highest determinability by checking

whether Q is a singleton set.

However, according to Lemma 1, there is an absence of monotonicity

in the increase or decrease of determinability of supersets of a given set of

attributes. In such a case, we would need to compute the determinability

of every Q ∈ 2N(x) and compare it with k, in order to establish whether

Q has the highest determinability. This is a combinatorial computation for

verifying the maximal determinability of Q. Hence, DETERMIN /∈ NP .
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From Theorem 1, it follows that every problem in NP can be reduced to

the determinability problem in polynomial time. Also, according to Theo-

rem 2, this problem is not in NP. Therefore, the determinability problem is

strictly NP-hard.
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